Abstract:
In the second part of the paper we use propositions, methods and results of the first part appeared in the previous issue of this journal.
Under conditions I–IV of § 1, we prove theorems about behaviour of the a posteriory density (similar to the well-known Le Cam's results [2]), Bayesian estimators t(a)n for the risk function ‖θ‖a, Pitman's estimators of the location parameter etc. We prove, for example, that the estimators t(a)n, for different a⩾1, are equivalent in the sense that
\mathbf E\{\sqrt n\bigl|t_n^{(a_1)}-t_n^{(a_2)}\bigr|\}^p\underset{n\to\infty}\longrightarrow0\quad(p>0).
Citation:
I. A. Ibragimov, R. Z. Khas'minskii, “Asymptotical behaviour of some statistical estimators. II. Limiting theorems for the a posteriory density and Bayesian estimators”, Teor. Veroyatnost. i Primenen., 18:1 (1973), 78–93; Theory Probab. Appl., 18:1 (1973), 76–91
This publication is cited in the following 39 articles:
Nakahiro Yoshida, “Simplified quasi-likelihood analysis for a locally asymptotically quadratic random field”, Ann Inst Stat Math, 2024
A. A. Borovkov, Al. V. Bulinski, A. M. Vershik, D. Zaporozhets, A. S. Holevo, A. N. Shiryaev, “Ildar Abdullovich Ibragimov (on his ninetieth birthday)”, Russian Math. Surveys, 78:3 (2023), 573–583
Nakahiro Yoshida, “Quasi-likelihood analysis and its applications”, Stat Inference Stoch Process, 25:1 (2022), 43
F. Götze, A. Yu. Zaitsev, “Rare Events and Poisson Point Processes”, J Math Sci, 244:5 (2020), 771
Rudolf Ahlswede, Foundations in Signal Processing, Communications and Networking, 15, Probabilistic Methods and Distributed Information, 2019, 533
A. A. Zaikin, “Estimates with asymptotically uniformly minimal d-risk”, Theory Probab. Appl., 63:3 (2019), 500–505
Yusuke Kaino, Masayuki Uchida, “Hybrid estimators for small diffusion processes based on reduced data”, Metrika, 81:7 (2018), 745
Kamil Dedecius, Vladimira Seckarova, “Factorized Estimation of Partially Shared Parameters in Diffusion Networks”, IEEE Trans. Signal Process., 65:19 (2017), 5153
Kamil Dedecius, Petar M. Djuric, “Sequential Estimation and Diffusion of Information Over Networks: A Bayesian Approach With Exponential Family of Distributions”, IEEE Trans. Signal Process., 65:7 (2017), 1795
A. A. Zaikin, “Asymptotic expansion of posterior distribution of parameter centered by a \sqrt n-consistent estimate”, J. Math. Sci. (N. Y.), 229:6 (2018), 678–697
George Monokroussos, “A Classical MCMC Approach to the Estimation of Limited Dependent Variable Models of Time Series”, Comput Econ, 42:1 (2013), 71
George Monokroussos, “A Classical MCMC Approach to the Estimation of Limited Dependent Variable Models of Time Series”, SSRN Journal, 2012
M. C. M. de Gunst, O. Shcherbakova, “Asymptotic behavior of Bayes estimators for hidden Markov models with application to ion channels”, Math. Meth. Stat., 17:4 (2008), 342