Abstract:
The article studies asymptotic behaviour of posterior distribution of a real parameter centered by a √n-consistent estimate. An analogue of Bernstein–von Mises theorem is presented. The article emphasizes uniformity of the result. In the same framework asymptotic expansions of posterior distribution and posterior mean of functions bounded by polynomial are constructed.
Key words and phrases:
posterior distribution, Bernstein-von Mises theorem, asymptotic expansion, √n-consistent estimates.
Citation:
A. A. Zaikin, “Asymptotic expansion of posterior distribution of parameter centered by a √n-consistent estimate”, Probability and statistics. Part 24, Zap. Nauchn. Sem. POMI, 454, POMI, St. Petersburg, 2016, 121–150; J. Math. Sci. (N. Y.), 229:6 (2018), 678–697