Abstract:
Let ξj, j=0,1…, be independent identically distributed random variables with Eξj≠0 belonging to the domain of attraction of the normal law.
The main result is the following relation:
E{Nn∣Qn(x)≢0}∼1πlnn(n→∞)
where Qn(x)=∑nj=0ξjxj and Nn is the number of real roots of Qn.
Citation:
I. A. Ibragimov, N. B. Maslova, “On the expected number of real zeros of random polynomials. II. Coefficients with non-zero means”, Teor. Veroyatnost. i Primenen., 16:3 (1971), 495–503; Theory Probab. Appl., 16:3 (1971), 485–493
\Bibitem{IbrMas71}
\by I.~A.~Ibragimov, N.~B.~Maslova
\paper On the expected number of real zeros of random polynomials. II.~Coefficients with non-zero means
\jour Teor. Veroyatnost. i Primenen.
\yr 1971
\vol 16
\issue 3
\pages 495--503
\mathnet{http://mi.mathnet.ru/tvp2262}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=288824}
\zmath{https://zbmath.org/?q=an:0277.60052}
\transl
\jour Theory Probab. Appl.
\yr 1971
\vol 16
\issue 3
\pages 485--493
\crossref{https://doi.org/10.1137/1116052}
This publication is cited in the following 33 articles:
Marco Aymone, Susana Frómeta, Ricardo Misturini, “How many real zeros does a random Dirichlet series have?”, Electron. J. Probab., 29:none (2024)
A. A. Borovkov, Al. V. Bulinski, A. M. Vershik, D. Zaporozhets, A. S. Holevo, A. N. Shiryaev, “Ildar Abdullovich Ibragimov (on his ninetieth birthday)”, Russian Math. Surveys, 78:3 (2023), 573–583
Samya Praharaj, Suman Guha, “An Interesting Class of Non-Kac Random Polynomials”, J Indian Soc Probab Stat, 24:2 (2023), 545
Yen Do, Hoi H. Nguyen, Oanh Nguyen, “Random trigonometric polynomials: Universality and non-universality of the variance for the number of real roots”, Ann. Inst. H. Poincaré Probab. Statist., 58:3 (2022)
Yen Q. Do, “Real roots of random polynomials with coefficients of polynomial growth: a comparison principle and applications”, Electron. J. Probab., 26:none (2021)
Hanan Aljubran, Maxim L. Yattselev, “An asymptotic expansion for the expected number of real zeros of Kac–Geronimus polynomials”, Rocky Mountain J. Math., 51:4 (2021)
Soudabeh Shemehsavar, “On Real Zeros of Self-Similar Random Gaussian Polynomials with Decreasing Variances: Apparition of a Phase Transition”, Bull. Iran. Math. Soc., 45:1 (2019), 239
V. I. Bernik, N. V. Budarina, A. V. Lunevich, Kh. O'Donnell, “Raspredelenie nulei nevyrozhdennykh funktsii na korotkikh otrezkakh II”, Chebyshevskii sb., 19:1 (2018), 5–14
Yen Do, Oanh Nguyen, Van Vu, “Roots of random polynomials with coefficients of polynomial growth”, Ann. Probab., 46:5 (2018)
Dipty Rani Dhal, DR.Prasana Kumar Mishra, “Expected Number Of Real Zeros Of a Random Algebraic Polynomial”, Materials Today: Proceedings, 5:1 (2018), 936
Soudabeh Shemehsavar, “Expected Number of Real Zeros of Gaussian Self-Reciprocal Random Algebraic Polynomials”, Iran J Sci Technol Trans Sci, 42:1 (2018), 105
V. I. Bernik, N. V. Budarina, A. V. Lunevich, Kh. O'Donnel, “Raspredelenie nulei nevyrozhdennykh funktsii na korotkikh otrezkakh”, Chebyshevskii sb., 18:4 (2017), 107–115
Jean-Marc Azaïs, Federico Dalmao, José R. León, “CLT for the zeros of classical random trigonometric polynomials”, Ann. Inst. H. Poincaré Probab. Statist., 52:2 (2016)
Hoi Nguyen, Oanh Nguyen, Van Vu, “On the number of real roots of random polynomials”, Commun. Contemp. Math., 18:04 (2016), 1550052
Yen Do, Hoi Nguyen, Van Vu, “Real roots of random polynomials: expectation and repulsion”, Proc. London Math. Soc., 111:6 (2015), 1231
Terence Tao, Van Vu, “Local Universality of Zeroes of Random Polynomials”, Int Math Res Notices, 2015:13 (2015), 5053
K. Farahmand, Jianliang Gao, “Algebraic polynomials with symmetric random coefficients”, Rocky Mountain J. Math., 44:2 (2014)
ZhongGen Su, QiMan Shao, “Asymptotics of the variance of the number of real roots of random trigonometric polynomials”, Sci. China Math., 55:11 (2012), 2347
Charles Bordenave, Djalil Chafaï, “Around the circular law”, Probab. Surveys, 9:none (2012)
A. Nezakati, K. Farahmand, “Real Zeros of Algebraic Polynomials with Dependent Random Coefficients”, Stochastic Analysis and Applications, 28:3 (2010), 558