Loading [MathJax]/jax/output/CommonHTML/jax.js
Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1971, Volume 16, Issue 3, Pages 495–503 (Mi tvp2262)  

This article is cited in 32 scientific papers (total in 33 papers)

On the expected number of real zeros of random polynomials. II. Coefficients with non-zero means

I. A. Ibragimov, N. B. Maslova

Leningrad
Abstract: Let ξj, j=0,1, be independent identically distributed random variables with Eξj0 belonging to the domain of attraction of the normal law.
The main result is the following relation:
E{NnQn(x)0}1πlnn(n)
where Qn(x)=nj=0ξjxj and Nn is the number of real roots of Qn.
Received: 10.11.1969
English version:
Theory of Probability and its Applications, 1971, Volume 16, Issue 3, Pages 485–493
DOI: https://doi.org/10.1137/1116052
Bibliographic databases:
Language: Russian
Citation: I. A. Ibragimov, N. B. Maslova, “On the expected number of real zeros of random polynomials. II. Coefficients with non-zero means”, Teor. Veroyatnost. i Primenen., 16:3 (1971), 495–503; Theory Probab. Appl., 16:3 (1971), 485–493
Citation in format AMSBIB
\Bibitem{IbrMas71}
\by I.~A.~Ibragimov, N.~B.~Maslova
\paper On the expected number of real zeros of random polynomials. II.~Coefficients with non-zero means
\jour Teor. Veroyatnost. i Primenen.
\yr 1971
\vol 16
\issue 3
\pages 495--503
\mathnet{http://mi.mathnet.ru/tvp2262}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=288824}
\zmath{https://zbmath.org/?q=an:0277.60052}
\transl
\jour Theory Probab. Appl.
\yr 1971
\vol 16
\issue 3
\pages 485--493
\crossref{https://doi.org/10.1137/1116052}
Linking options:
  • https://www.mathnet.ru/eng/tvp2262
  • https://www.mathnet.ru/eng/tvp/v16/i3/p495
    Cycle of papers
    This publication is cited in the following 33 articles:
    1. Marco Aymone, Susana Frómeta, Ricardo Misturini, “How many real zeros does a random Dirichlet series have?”, Electron. J. Probab., 29:none (2024)  crossref
    2. A. A. Borovkov, Al. V. Bulinski, A. M. Vershik, D. Zaporozhets, A. S. Holevo, A. N. Shiryaev, “Ildar Abdullovich Ibragimov (on his ninetieth birthday)”, Russian Math. Surveys, 78:3 (2023), 573–583  mathnet  crossref  crossref  mathscinet  adsnasa  isi
    3. Samya Praharaj, Suman Guha, “An Interesting Class of Non-Kac Random Polynomials”, J Indian Soc Probab Stat, 24:2 (2023), 545  crossref
    4. Yen Do, Hoi H. Nguyen, Oanh Nguyen, “Random trigonometric polynomials: Universality and non-universality of the variance for the number of real roots”, Ann. Inst. H. Poincaré Probab. Statist., 58:3 (2022)  crossref
    5. Yen Q. Do, “Real roots of random polynomials with coefficients of polynomial growth: a comparison principle and applications”, Electron. J. Probab., 26:none (2021)  crossref
    6. Hanan Aljubran, Maxim L. Yattselev, “An asymptotic expansion for the expected number of real zeros of Kac–Geronimus polynomials”, Rocky Mountain J. Math., 51:4 (2021)  crossref
    7. Soudabeh Shemehsavar, “On Real Zeros of Self-Similar Random Gaussian Polynomials with Decreasing Variances: Apparition of a Phase Transition”, Bull. Iran. Math. Soc., 45:1 (2019), 239  crossref
    8. V. I. Bernik, N. V. Budarina, A. V. Lunevich, Kh. O'Donnell, “Raspredelenie nulei nevyrozhdennykh funktsii na korotkikh otrezkakh II”, Chebyshevskii sb., 19:1 (2018), 5–14  mathnet  crossref  elib
    9. Yen Do, Oanh Nguyen, Van Vu, “Roots of random polynomials with coefficients of polynomial growth”, Ann. Probab., 46:5 (2018)  crossref
    10. Dipty Rani Dhal, DR.Prasana Kumar Mishra, “Expected Number Of Real Zeros Of a Random Algebraic Polynomial”, Materials Today: Proceedings, 5:1 (2018), 936  crossref
    11. Soudabeh Shemehsavar, “Expected Number of Real Zeros of Gaussian Self-Reciprocal Random Algebraic Polynomials”, Iran J Sci Technol Trans Sci, 42:1 (2018), 105  crossref
    12. V. I. Bernik, N. V. Budarina, A. V. Lunevich, Kh. O'Donnel, “Raspredelenie nulei nevyrozhdennykh funktsii na korotkikh otrezkakh”, Chebyshevskii sb., 18:4 (2017), 107–115  mathnet  crossref
    13. Jean-Marc Azaïs, Federico Dalmao, José R. León, “CLT for the zeros of classical random trigonometric polynomials”, Ann. Inst. H. Poincaré Probab. Statist., 52:2 (2016)  crossref
    14. Hoi Nguyen, Oanh Nguyen, Van Vu, “On the number of real roots of random polynomials”, Commun. Contemp. Math., 18:04 (2016), 1550052  crossref
    15. Yen Do, Hoi Nguyen, Van Vu, “Real roots of random polynomials: expectation and repulsion”, Proc. London Math. Soc., 111:6 (2015), 1231  crossref
    16. Terence Tao, Van Vu, “Local Universality of Zeroes of Random Polynomials”, Int Math Res Notices, 2015:13 (2015), 5053  crossref
    17. K. Farahmand, Jianliang Gao, “Algebraic polynomials with symmetric random coefficients”, Rocky Mountain J. Math., 44:2 (2014)  crossref
    18. ZhongGen Su, QiMan Shao, “Asymptotics of the variance of the number of real roots of random trigonometric polynomials”, Sci. China Math., 55:11 (2012), 2347  crossref
    19. Charles Bordenave, Djalil Chafaï, “Around the circular law”, Probab. Surveys, 9:none (2012)  crossref
    20. A. Nezakati, K. Farahmand, “Real Zeros of Algebraic Polynomials with Dependent Random Coefficients”, Stochastic Analysis and Applications, 28:3 (2010), 558  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:509
    Full-text PDF :220
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025