Loading [MathJax]/jax/output/CommonHTML/jax.js
Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1971, Volume 16, Issue 2, Pages 229–248 (Mi tvp2144)  

This article is cited in 47 scientific papers (total in 48 papers)

On the expected number of real zeros of random polynomials I. Coefficients with zero means

I. A. Ibragimov

Leningrad
Abstract: Let ξj, j=0,1,, be independent identically distributed random variables with Eξj=0 and belong to the domain of attraction of the normal law.
The main result is:
E{NnQn(x)0}n2πlnnif P{ξj0}>0
where Qn(x)=nj=0ξjxj, Nn is the number of real roots of Qn.
Received: 01.07.1969
English version:
Theory of Probability and its Applications, 1971, Volume 16, Issue 2, Pages 228–248
DOI: https://doi.org/10.1137/1116023
Bibliographic databases:
Language: Russian
Citation: I. A. Ibragimov, “On the expected number of real zeros of random polynomials I. Coefficients with zero means”, Teor. Veroyatnost. i Primenen., 16:2 (1971), 229–248; Theory Probab. Appl., 16:2 (1971), 228–248
Citation in format AMSBIB
\Bibitem{Ibr71}
\by I.~A.~Ibragimov
\paper On the expected number of real zeros of random polynomials I.~Coefficients with zero means
\jour Teor. Veroyatnost. i Primenen.
\yr 1971
\vol 16
\issue 2
\pages 229--248
\mathnet{http://mi.mathnet.ru/tvp2144}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=286157}
\zmath{https://zbmath.org/?q=an:0277.60051}
\transl
\jour Theory Probab. Appl.
\yr 1971
\vol 16
\issue 2
\pages 228--248
\crossref{https://doi.org/10.1137/1116023}
Linking options:
  • https://www.mathnet.ru/eng/tvp2144
  • https://www.mathnet.ru/eng/tvp/v16/i2/p229
    Cycle of papers
    This publication is cited in the following 48 articles:
    1. Marco Aymone, Susana Frómeta, Ricardo Misturini, “How many real zeros does a random Dirichlet series have?”, Electron. J. Probab., 29:none (2024)  crossref
    2. A. A. Borovkov, Al. V. Bulinski, A. M. Vershik, D. Zaporozhets, A. S. Holevo, A. N. Shiryaev, “Ildar Abdullovich Ibragimov (on his ninetieth birthday)”, Russian Math. Surveys, 78:3 (2023), 573–583  mathnet  crossref  crossref  mathscinet  adsnasa  isi
    3. Samya Praharaj, Suman Guha, “An Interesting Class of Non-Kac Random Polynomials”, J Indian Soc Probab Stat, 24:2 (2023), 545  crossref
    4. Liviu I. Nicolaescu, “Counting Zeros of Random Functions”, The American Mathematical Monthly, 130:7 (2023), 625  crossref
    5. Yen Do, Hoi H. Nguyen, Oanh Nguyen, “Random trigonometric polynomials: Universality and non-universality of the variance for the number of real roots”, Ann. Inst. H. Poincaré Probab. Statist., 58:3 (2022)  crossref
    6. Yen Q. Do, “Real roots of random polynomials with coefficients of polynomial growth: a comparison principle and applications”, Electron. J. Probab., 26:none (2021)  crossref
    7. Goetze F. Koleda D. Zaporozhets D., “Joint Distribution of Conjugate Algebraic Numbers: a Random Polynomial Approach”, Adv. Math., 359 (2020), 106849  crossref  isi
    8. Ali Pirhadi, “Real zeros of random trigonometric polynomials with pairwise equal blocks of coefficients”, Rocky Mountain J. Math., 50:4 (2020)  crossref
    9. Pautrel Thibault, “New asymptotics for the mean number of zeros of random trigonometric polynomials with strongly dependent Gaussian coefficients”, Electron. Commun. Probab., 25:none (2020)  crossref
    10. Soudabeh Shemehsavar, “On Real Zeros of Self-Similar Random Gaussian Polynomials with Decreasing Variances: Apparition of a Phase Transition”, Bull. Iran. Math. Soc., 45:1 (2019), 239  crossref
    11. Vlad Bally, Lucia Caramellino, Guillaume Poly, “Non universality for the variance of the number of real roots of random trigonometric polynomials”, Probab. Theory Relat. Fields, 174:3-4 (2019), 887  crossref
    12. Zhidong Bai, Yongchang Hui, Dandan Jiang, Zhihui Lv, Wing-Keung Wong, Shurong Zheng, Cathy W.S. Chen, “A new test of multivariate nonlinear causality”, PLoS ONE, 13:1 (2018), e0185155  crossref
    13. Soudabeh Shemehsavar, “Expected Number of Real Zeros of Gaussian Self-Reciprocal Random Algebraic Polynomials”, Iran J Sci Technol Trans Sci, 42:1 (2018), 105  crossref
    14. Yen Do, Oanh Nguyen, Van Vu, “Roots of random polynomials with coefficients of polynomial growth”, Ann. Probab., 46:5 (2018)  crossref
    15. Naomi Dvora Feldheim, “Variance of the number of zeroes of shift-invariant Gaussian analytic functions”, Isr. J. Math., 227:2 (2018), 753  crossref
    16. DORON S. LUBINSKY, IGOR E. PRITSKER, XIAOJU XIE, “Expected number of real zeros for random orthogonal polynomials”, Math. Proc. Camb. Phil. Soc., 164:1 (2018), 47  crossref
    17. Soeze K., “Real Zeroes of Random Polynomials, i. Flip-Invariance, Turans Lemma, and the Newton- Hadamard Polygon”, Isr. J. Math., 220:2 (2017), 817–836  crossref  isi
    18. Hoi Nguyen, Oanh Nguyen, Van Vu, “On the number of real roots of random polynomials”, Commun. Contemp. Math., 18:04 (2016), 1550052  crossref
    19. Jean-Marc Azaïs, Federico Dalmao, José R. León, “CLT for the zeros of classical random trigonometric polynomials”, Ann. Inst. H. Poincaré Probab. Statist., 52:2 (2016)  crossref
    20. Igor E. Pritsker, Xiaoju Xie, “Expected number of real zeros for random Freud orthogonal polynomials”, Journal of Mathematical Analysis and Applications, 429:2 (2015), 1258  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:514
    Full-text PDF :247
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025