Abstract:
Let ξj, j=0,1,…, be independent identically distributed random variables with Eξj=0 and belong to the domain of attraction of the normal law.
The main result is:
E{Nn∣Qn(x)≢0}∼n→∞2πlnnif P{ξj≠0}>0
where Qn(x)=∑nj=0ξjxj, Nn is the number of real roots of Qn.
Citation:
I. A. Ibragimov, “On the expected number of real zeros of random polynomials I. Coefficients with zero means”, Teor. Veroyatnost. i Primenen., 16:2 (1971), 229–248; Theory Probab. Appl., 16:2 (1971), 228–248
\Bibitem{Ibr71}
\by I.~A.~Ibragimov
\paper On the expected number of real zeros of random polynomials I.~Coefficients with zero means
\jour Teor. Veroyatnost. i Primenen.
\yr 1971
\vol 16
\issue 2
\pages 229--248
\mathnet{http://mi.mathnet.ru/tvp2144}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=286157}
\zmath{https://zbmath.org/?q=an:0277.60051}
\transl
\jour Theory Probab. Appl.
\yr 1971
\vol 16
\issue 2
\pages 228--248
\crossref{https://doi.org/10.1137/1116023}
This publication is cited in the following 48 articles:
Marco Aymone, Susana Frómeta, Ricardo Misturini, “How many real zeros does a random Dirichlet series have?”, Electron. J. Probab., 29:none (2024)
A. A. Borovkov, Al. V. Bulinski, A. M. Vershik, D. Zaporozhets, A. S. Holevo, A. N. Shiryaev, “Ildar Abdullovich Ibragimov (on his ninetieth birthday)”, Russian Math. Surveys, 78:3 (2023), 573–583
Samya Praharaj, Suman Guha, “An Interesting Class of Non-Kac Random Polynomials”, J Indian Soc Probab Stat, 24:2 (2023), 545
Liviu I. Nicolaescu, “Counting Zeros of Random Functions”, The American Mathematical Monthly, 130:7 (2023), 625
Yen Do, Hoi H. Nguyen, Oanh Nguyen, “Random trigonometric polynomials: Universality and non-universality of the variance for the number of real roots”, Ann. Inst. H. Poincaré Probab. Statist., 58:3 (2022)
Yen Q. Do, “Real roots of random polynomials with coefficients of polynomial growth: a comparison principle and applications”, Electron. J. Probab., 26:none (2021)
Goetze F. Koleda D. Zaporozhets D., “Joint Distribution of Conjugate Algebraic Numbers: a Random Polynomial Approach”, Adv. Math., 359 (2020), 106849
Ali Pirhadi, “Real zeros of random trigonometric polynomials with pairwise equal blocks of coefficients”, Rocky Mountain J. Math., 50:4 (2020)
Pautrel Thibault, “New asymptotics for the mean number of zeros of random trigonometric polynomials with strongly dependent Gaussian coefficients”, Electron. Commun. Probab., 25:none (2020)
Soudabeh Shemehsavar, “On Real Zeros of Self-Similar Random Gaussian Polynomials with Decreasing Variances: Apparition of a Phase Transition”, Bull. Iran. Math. Soc., 45:1 (2019), 239
Vlad Bally, Lucia Caramellino, Guillaume Poly, “Non universality for the variance of the number of real roots of random trigonometric polynomials”, Probab. Theory Relat. Fields, 174:3-4 (2019), 887
Zhidong Bai, Yongchang Hui, Dandan Jiang, Zhihui Lv, Wing-Keung Wong, Shurong Zheng, Cathy W.S. Chen, “A new test of multivariate nonlinear causality”, PLoS ONE, 13:1 (2018), e0185155
Soudabeh Shemehsavar, “Expected Number of Real Zeros of Gaussian Self-Reciprocal Random Algebraic Polynomials”, Iran J Sci Technol Trans Sci, 42:1 (2018), 105
Yen Do, Oanh Nguyen, Van Vu, “Roots of random polynomials with coefficients of polynomial growth”, Ann. Probab., 46:5 (2018)
Naomi Dvora Feldheim, “Variance of the number of zeroes of shift-invariant Gaussian analytic functions”, Isr. J. Math., 227:2 (2018), 753
DORON S. LUBINSKY, IGOR E. PRITSKER, XIAOJU XIE, “Expected number of real zeros for random orthogonal polynomials”, Math. Proc. Camb. Phil. Soc., 164:1 (2018), 47
Soeze K., “Real Zeroes of Random Polynomials, i. Flip-Invariance, Turans Lemma, and the Newton- Hadamard Polygon”, Isr. J. Math., 220:2 (2017), 817–836
Hoi Nguyen, Oanh Nguyen, Van Vu, “On the number of real roots of random polynomials”, Commun. Contemp. Math., 18:04 (2016), 1550052
Jean-Marc Azaïs, Federico Dalmao, José R. León, “CLT for the zeros of classical random trigonometric polynomials”, Ann. Inst. H. Poincaré Probab. Statist., 52:2 (2016)
Igor E. Pritsker, Xiaoju Xie, “Expected number of real zeros for random Freud orthogonal polynomials”, Journal of Mathematical Analysis and Applications, 429:2 (2015), 1258