Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2007, Volume 82, Issue 6, Pages 803–810
DOI: https://doi.org/10.4213/mzm4180
(Mi mzm4180)
 

This article is cited in 10 scientific papers (total in 10 papers)

Estimates of the Distances to Direct Lines and Rays from the Poles of Simplest Fractions Bounded in the Norm of LpLp on These Sets

P. A. Borodin

M. V. Lomonosov Moscow State University
References:
Abstract: For each p>1p>1, we obtain a lower bound for the distances to the real axis from the poles of simplest fractions (i.e., logarithmic derivatives of polynomials) bounded by 1 in the norm of LpLp on this axis; this estimate improves the first estimate of such kind derived by Danchenko in 1994. For p=2p=2, the estimate turns out to be sharp. Similar estimates are obtained for the distances from the poles of simplest fractions to the vertices of angles and rays.
Keywords: simplest fraction, logarithmic derivative, algebraic polynomial, rational function, Euler beta function, Hölder's inequality, LpLp-norm, Hardy space.
Received: 26.12.2006
English version:
Mathematical Notes, 2007, Volume 82, Issue 6, Pages 725–732
DOI: https://doi.org/10.1134/S0001434607110168
Bibliographic databases:
UDC: 517.53
Language: Russian
Citation: P. A. Borodin, “Estimates of the Distances to Direct Lines and Rays from the Poles of Simplest Fractions Bounded in the Norm of LpLp on These Sets”, Mat. Zametki, 82:6 (2007), 803–810; Math. Notes, 82:6 (2007), 725–732
Citation in format AMSBIB
\Bibitem{Bor07}
\by P.~A.~Borodin
\paper Estimates of the Distances to Direct Lines and Rays from the Poles of Simplest Fractions Bounded in the Norm of~$L_p$ on These Sets
\jour Mat. Zametki
\yr 2007
\vol 82
\issue 6
\pages 803--810
\mathnet{http://mi.mathnet.ru/mzm4180}
\crossref{https://doi.org/10.4213/mzm4180}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2399960}
\zmath{https://zbmath.org/?q=an:1163.26005}
\elib{https://elibrary.ru/item.asp?id=9901584}
\transl
\jour Math. Notes
\yr 2007
\vol 82
\issue 6
\pages 725--732
\crossref{https://doi.org/10.1134/S0001434607110168}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000252128700016}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-38349060982}
Linking options:
  • https://www.mathnet.ru/eng/mzm4180
  • https://doi.org/10.4213/mzm4180
  • https://www.mathnet.ru/eng/mzm/v82/i6/p803
  • This publication is cited in the following 10 articles:
    1. P. A. Borodin, K. S. Shklyaev, “Density of quantized approximations”, Russian Math. Surveys, 78:5 (2023), 797–851  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    2. M. A. Komarov, “Approximation by linear fractional transformations of simple partial fractions and their differences”, Russian Math. (Iz. VUZ), 62:3 (2018), 23–33  mathnet  crossref  isi
    3. Chunaev P., Danchenko V., “Quadrature Formulas With Variable Nodes and Jackson-Nikolskii Inequalities For Rational Functions”, J. Approx. Theory, 228 (2018), 1–20  crossref  mathscinet  zmath  isi  scopus
    4. V. I. Danchenko, M. A. Komarov, P. V. Chunaev, “Extremal and approximative properties of simple partial fractions”, Russian Math. (Iz. VUZ), 62:12 (2018), 6–41  mathnet  crossref  isi
    5. P. A. Borodin, “Density of a semigroup in a Banach space”, Izv. Math., 78:6 (2014), 1079–1104  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    6. V. I. Danchenko, “Convergence of simple partial fractions in Lp(R)”, Sb. Math., 201:7 (2010), 985–997  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    7. V. I. Danchenko, E. N. Kondakova, “Chebyshev's alternance in the approximation of constants by simple partial fractions”, Proc. Steklov Inst. Math., 270 (2010), 80–90  mathnet  crossref  mathscinet  zmath  isi  elib
    8. V. Yu. Protasov, “Approximation by simple partial fractions and the Hilbert transform”, Izv. Math., 73:2 (2009), 333–349  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    9. P. A. Borodin, “Approximation by simple partial fractions on the semi-axis”, Sb. Math., 200:8 (2009), 1127–1148  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    10. E. N. Kondakova, “Interpolyatsiya naiprosteishimi drobyami”, Izv. Sarat. un-ta. Nov. ser. Ser.: Matematika. Mekhanika. Informatika, 9:2 (2009), 30–37  mathnet  crossref  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:541
    Full-text PDF :247
    References:65
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025