Loading [MathJax]/jax/output/CommonHTML/jax.js
Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2009, Volume 73, Issue 2, Pages 333–349
DOI: https://doi.org/10.1070/IM2009v073n02ABEH002449
(Mi im2721)
 

This article is cited in 29 scientific papers (total in 29 papers)

Approximation by simple partial fractions and the Hilbert transform

V. Yu. Protasov

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: We study the problem of approximation of functions in Lp by simple partial fractions on the real axis and semi-axis. A simple partial fraction is a rational function of the form g(t)=nk=11tzk, where z1,,zn are complex numbers. We describe the set of functions that can be approximated by simple partial fractions within any accuracy and the set of functions that can be approximated by convex combinations of them (the cone of simple partial fractions). We obtain estimates for the norms of simple partial fractions and conditions for the convergence of function series k=11tzk in the space Lp. Our approach is based on the use of the Hilbert transform and the methods of convex analysis.
Keywords: approximation, simple partial fraction, convergence of function series, Hilbert transform, entire function, logarithmic derivative.
Received: 29.08.2007
Bibliographic databases:
UDC: 517.538.52+517.444
MSC: 41A20, 46A55, 30E10
Language: English
Original paper language: Russian
Citation: V. Yu. Protasov, “Approximation by simple partial fractions and the Hilbert transform”, Izv. Math., 73:2 (2009), 333–349
Citation in format AMSBIB
\Bibitem{Pro09}
\by V.~Yu.~Protasov
\paper Approximation by simple partial fractions and the Hilbert transform
\jour Izv. Math.
\yr 2009
\vol 73
\issue 2
\pages 333--349
\mathnet{http://mi.mathnet.ru/eng/im2721}
\crossref{https://doi.org/10.1070/IM2009v073n02ABEH002449}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2532449}
\zmath{https://zbmath.org/?q=an:1178.41010}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2009IzMat..73..333P}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000266177900005}
\elib{https://elibrary.ru/item.asp?id=20425203}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-65349141750}
Linking options:
  • https://www.mathnet.ru/eng/im2721
  • https://doi.org/10.1070/IM2009v073n02ABEH002449
  • https://www.mathnet.ru/eng/im/v73/i2/p123
  • This publication is cited in the following 29 articles:
    1. F. G. Avkhadiev, I. R. Kayumov, S. R. Nasyrov, “Extremal problems in geometric function theory”, Russian Math. Surveys, 78:2 (2023), 211–271  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    2. P. A. Borodin, K. S. Shklyaev, “Density of quantized approximations”, Russian Math. Surveys, 78:5 (2023), 797–851  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    3. M. A. Komarov, “Rational approximations of Lipschitz functions from the Hardy class on the line”, Probl. anal. Issues Anal., 10(28):2 (2021), 54–66  mathnet  crossref  elib
    4. Christian Klein, Julien Riton, Nikola Stoilov, “Multi-domain spectral approach for the Hilbert transform on the real line”, Partial Differ. Equ. Appl., 2:3 (2021)  crossref
    5. M. A. Komarov, “On the rate of approximation in the unit disc of $H^1$-functions by logarithmic derivatives of polynomials with zeros on the boundary”, Izv. Math., 84:3 (2020), 437–448  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    6. Komarov M.A., “Approximation to Constant Functions By Electrostatic Fields Due to Electrons and Positrons”, Lobachevskii J. Math., 40:1, SI (2019), 79–84  crossref  mathscinet  isi  scopus
    7. M. A. Komarov, “Approximation by linear fractional transformations of simple partial fractions and their differences”, Russian Math. (Iz. VUZ), 62:3 (2018), 23–33  mathnet  crossref  isi
    8. M. A. Komarov, “On approximation by special differences of simplest fractions”, St. Petersburg Math. J., 30:4 (2019), 655–665  mathnet  crossref  mathscinet  isi  elib
    9. V. I. Danchenko, M. A. Komarov, P. V. Chunaev, “Extremal and approximative properties of simple partial fractions”, Russian Math. (Iz. VUZ), 62:12 (2018), 6–41  mathnet  crossref  isi
    10. M. A. Komarov, “Criteria for the Best Approximation by Simple Partial Fractions on Semi-Axis and Axis”, J Math Sci, 235:2 (2018), 168  crossref
    11. M. A. Komarov, “A criterion for the best uniform approximation by simple partial fractions in terms of alternance. II”, Izv. Math., 81:3 (2017), 568–591  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    12. V. I. Danchenko, L. A. Semin, “Sharp quadrature formulas and inequalities between various metrics for rational functions”, Siberian Math. J., 57:2 (2016), 218–229  mathnet  crossref  crossref  mathscinet  isi  elib
    13. M. A. Komarov, “A criterion for the best uniform approximation by simple partial fractions in terms of alternance”, Izv. Math., 79:3 (2015), 431–448  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    14. V. I. Danchenko, A. E. Dodonov, “Estimates for $L_p$-norms of simple partial fractions”, Russian Math. (Iz. VUZ), 58:6 (2014), 6–15  mathnet  crossref
    15. I. R. Kayumov, “On the Convergence of Series in Spaces of Integrable Functions”, Math. Notes, 95:6 (2014), 780–785  mathnet  crossref  crossref  mathscinet  isi  elib
    16. P. Chunaev, “Least deviation of logarithmic derivatives of algebraic polynomials from zero”, J. Approx. Theory, 185 (2014), 98–106  crossref  mathscinet  zmath  isi
    17. F. D. Kayumov, “Integral estimates for derivatives of univalent functions”, Lobachevskii J. Math., 35:4 (2014), 402–408  crossref  mathscinet
    18. M. A. Komarov, “An example of nonuniqueness of a simple partial fraction of the best uniform approximation”, Russian Math. (Iz. VUZ), 57:9 (2013), 22–30  mathnet  crossref
    19. F. D. Kayumov, “Integralnye otsenki dlya proizvodnykh odnolistnykh funktsii”, Uchen. zap. Kazan. un-ta. Ser. Fiz.-matem. nauki, 155, no. 2, Izd-vo Kazanskogo un-ta, Kazan, 2013, 83–90  mathnet
    20. I. R. Kayumov, A. V. Kayumova, “Convergence of the imaginary parts of simplest fractions in $L_p(\mathbb R)$ for $p<1$”, J. Math. Sci. (N. Y.), 202:4 (2014), 553–559  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:1388
    Russian version PDF:384
    English version PDF:37
    References:137
    First page:52
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025