Loading [MathJax]/jax/output/SVG/config.js
Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2009, Volume 73, Issue 2, Pages 351–392
DOI: https://doi.org/10.1070/IM2009v073n02ABEH002450
(Mi im2429)
 

This article is cited in 115 scientific papers (total in 115 papers)

The fundamental solution of a diffusion-wave equation of fractional order

A. V. Pskhu

Scientific Research Institute of Applied Mathematics and Automation, Kabardino-Balkar Scientific Centre of the Russian Academy of Sciences
References:
Abstract: We construct a fundamental solution of a diffusion-wave equation with Dzhrbashyan–Nersesyan fractional differentiation operator with respect to the time variable. We prove reduction formulae and solve the problem of sign-determinacy for the fundamental solution. A general representation for solutions is constructed. We give a solution of the Cauchy problem and prove the uniqueness theorem in the class of functions satisfying an analogue of Tychonoff's condition. It is shown that our fundamental solution yields the corresponding solutions for the diffusion and wave equations when the order of the fractional derivative is equal to 1 or tends to 2. The corresponding results for equations with Riemann–Liouville and Caputo derivatives are obtained as particular cases of our assertions.
Keywords: fundamental solution, diffusion equation of fractional order, wave equation of fractional order, diffusion-wave equation, Dzhrbashyan–Nersesyan fractional differentiation operator, Riemann–Liouville derivative, Caputo derivative, Tychonoff's condition, Wright's function, Cauchy problem.
Received: 14.11.2006
Revised: 24.12.2007
Bibliographic databases:
UDC: 517.95
Language: English
Original paper language: Russian
Citation: A. V. Pskhu, “The fundamental solution of a diffusion-wave equation of fractional order”, Izv. Math., 73:2 (2009), 351–392
Citation in format AMSBIB
\Bibitem{Psk09}
\by A.~V.~Pskhu
\paper The fundamental solution of a~diffusion-wave equation of fractional order
\jour Izv. Math.
\yr 2009
\vol 73
\issue 2
\pages 351--392
\mathnet{http://mi.mathnet.ru/eng/im2429}
\crossref{https://doi.org/10.1070/IM2009v073n02ABEH002450}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2532450}
\zmath{https://zbmath.org/?q=an:1172.26001}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2009IzMat..73..351P}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000266177900006}
\elib{https://elibrary.ru/item.asp?id=20425204}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-65349154473}
Linking options:
  • https://www.mathnet.ru/eng/im2429
  • https://doi.org/10.1070/IM2009v073n02ABEH002450
  • https://www.mathnet.ru/eng/im/v73/i2/p141
  • This publication is cited in the following 115 articles:
    1. Fatima T. Bogatyreva, “ON INITIAL VALUE PROBLEMS FOR THE FRACTIONAL DIFFUSION EQUATION WITH DZHRBASHYAN–NERSESYAN OPERATORS”, J Math Sci, 2025  crossref
    2. E. M. Izhberdeeva, “Kompozitsii drobnykh proizvodnykh kak proizvodnaya Dzhrbashyana — Nersesyana”, Chelyab. fiz.-matem. zhurn., 9:1 (2024), 35–49  mathnet  crossref
    3. B.Yu. Irgashev, “On the solution of the Cauchy problem for a higher-order equation with the fractional Riemann-Liouville derivative”, Quaestiones Mathematicae, 2024, 1  crossref
    4. Maksim V. Kukushkin, “Schatten Index of the Sectorial Operator via the Real Component of Its Inverse”, Mathematics, 12:4 (2024), 540  crossref
    5. Yaozhong Hu, Xiong Wang, “Matching upper and lower moment bounds for a large class of stochastic PDEs driven by general space-time Gaussian noises”, Stoch PDE: Anal Comp, 12:1 (2024), 1  crossref
    6. Askar Rahmonov, Durdimurod Durdiev, Dilshoda Akramova, PROBLEMS IN THE TEXTILE AND LIGHT INDUSTRY IN THE CONTEXT OF INTEGRATION OF SCIENCE AND INDUSTRY AND WAYS TO SOLVE THEM: PTLICISIWS-2, 3045, PROBLEMS IN THE TEXTILE AND LIGHT INDUSTRY IN THE CONTEXT OF INTEGRATION OF SCIENCE AND INDUSTRY AND WAYS TO SOLVE THEM: PTLICISIWS-2, 2024, 040012  crossref
    7. Praveen Agarwal, Florence Hubert, Yves Dermenjian, Umida Baltaeva, Bobur Hasanov, “The Cauchy problem for the heat equation with a fractional load”, DCDS-S, 2024  crossref
    8. A. V. Pskhu, M. T. Kosmakova, K. A. Izhanova, “Cauchy Problem for a Loaded Fractional Diffusion Equation”, Lobachevskii J Math, 45:9 (2024), 4574  crossref
    9. M. G. Mazhgikhova, “Zadacha Koshi dlya uravneniya s drobnoi proizvodnoi Dzhrbashyana – Nersesyana s zapazdyvayuschim argumentom”, Vestnik KRAUNTs. Fiz.-mat. nauki, 42:1 (2023), 98–107  mathnet  crossref
    10. Bakhrom Irgashev, “Obtaining a representation of the solution of the Cauchy problem for one equation with a fractional derivative and applying it to the equation of forced beam vibrations”, Math Methods in App Sciences, 46:6 (2023), 6930  crossref
    11. O. Kh. Abdullaev, “On a Problem for a Parabolic-Hyperbolic Equation with a Nonlinear Loaded Part”, J Math Sci, 275:5 (2023), 644  crossref
    12. Marina Plekhanova, Elizaveta Izhberdeeva, Springer Proceedings in Mathematics & Statistics, 423, Differential Equations, Mathematical Modeling and Computational Algorithms, 2023, 115  crossref
    13. Vladimir E. Fedorov, Marina V. Plekhanova, Daria V. Melekhina, “On Local Unique Solvability for a Class of Nonlinear Identification Problems”, Axioms, 12:11 (2023), 1013  crossref
    14. Vladimir E. Fedorov, Marina V. Plekhanova, Daria V. Melekhina, “Nonlinear Inverse Problems for Equations with Dzhrbashyan–Nersesyan Derivatives”, Fractal Fract, 7:6 (2023), 464  crossref
    15. M. V. Plekhanova, E. M. Izhberdeeva, “Degenerate Quasilinear Equations with the Dzhrbashyan–Nersesyan Derivative”, J Math Sci, 269:2 (2023), 217  crossref
    16. Murat O. Mamchuev, Felix N. Chukhovskii, “Towards to solution of the fractional Takagi–Taupin equations. The Green function method”, Fract Calc Appl Anal, 26:2 (2023), 851  crossref
    17. A. V. Pskhu, “D'Alembert Formula for Diffusion-Wave Equation”, Lobachevskii J Math, 44:2 (2023), 644  crossref
    18. B. Yu. Irgashev, “Mixed Problem for Higher-Order Equations with Fractional Derivative and Degeneration in Both Variables”, Ukr Math J, 74:10 (2023), 1513  crossref
    19. A. A. Matchanova, “Inverse Problem for a Third-Order Parabolic-Hyperbolic Equation Involves Fractional Derivatives”, Lobachevskii J Math, 44:3 (2023), 1197  crossref
    20. Irgashev B.Yu., “Initial-Boundary Problem For Degenerate High Order Equation With Fractional Derivative”, Indian J. Pure Appl. Math., 53:1 (2022), 170–180  crossref  mathscinet  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:2440
    Russian version PDF:955
    English version PDF:86
    References:165
    First page:60
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025