Loading [MathJax]/jax/output/CommonHTML/jax.js
Recueil Mathématique (Nouvelle série)
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Recueil Mathématique (Nouvelle série), 1938, Volume 4(46), Number 3, Pages 471–497 (Mi sm5759)  

This article is cited in 54 scientific papers (total in 55 papers)

Sur un théorème d'analyse fonctionnelle

S. Soboleff
Received: 05.06.1938
Bibliographic databases:
Language: Russian
Citation: S. Soboleff, “Sur un théorème d'analyse fonctionnelle”, Amer. Math. Soc. Transl., 46:3 (1938), 39–68
Citation in format AMSBIB
\Bibitem{Sob38}
\by S.~Soboleff
\paper Sur un th\'eor\`eme d'analyse fonctionnelle
\jour Amer. Math. Soc. Transl.
\yr 1938
\vol 46
\issue 3
\pages 39--68
\mathnet{http://mi.mathnet.ru/eng/sm5759}
\zmath{https://zbmath.org/?q=an:0022.14803|64.1100.02}
Linking options:
  • https://www.mathnet.ru/eng/sm5759
  • https://www.mathnet.ru/eng/sm/v46/i3/p471
  • This publication is cited in the following 55 articles:
    1. A. K. Gushchin, “On Dirichlet problem”, Theoret. and Math. Phys., 218:1 (2024), 51–67  mathnet  crossref  crossref  mathscinet  adsnasa  isi
    2. D. Stolyarov, “Φ-neravenstva Mazi na oblastyakh”, Issledovaniya po lineinym operatoram i teorii funktsii. 52, Zap. nauchn. sem. POMI, 537, POMI, SPb., 2024, 128–150  mathnet
    3. D. M. Stolyarov, “Hardy-Littlewood-Sobolev inequality for p=1”, Sb. Math., 213:6 (2022), 844–889  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    4. Takashi Satomi, “An Inequality for the Compositions of Convex Functions with Convolutions and an Alternative Proof of the Brunn–Minkowski–Kemperman Inequality”, Proc. Steklov Inst. Math., 319 (2022), 265–282  mathnet  crossref  crossref  mathscinet
    5. Bekmaganbetov K.A. Kervenev K.Y. Toleugazy Y., “The Embedding Theorems For Anisotropic Nikol'Skii-Besov Spaces With Generalized Mixed Smoothness”, Bull. Karaganda Univ-Math., 104:4 (2021), 28–34  crossref  isi
    6. E. A. Pavlov, A. I. Furmenko, “O nekotorykh teoremakh vlozheniya idealnykh struktur”, Vestn. Tomsk. gos. un-ta. Matem. i mekh., 2021, no. 73, 30–41  mathnet  crossref
    7. G. G. Kazaryan, A. N. Karapetyants, V. N. Margaryan, H. A. Mkrtchyan, A. G. Sergeev, “New classes of function spaces and singular operators”, Trans. Moscow Math. Soc., 82 (2021), 273–288  mathnet  crossref
    8. G. A. Karapetyan, “Fractional multianisotropic spaces and embedding theorems”, Siberian Adv. Math., 30:4 (2020), 275–283  mathnet  crossref  crossref
    9. D. V. Gorbachev, V. I. Ivanov, “Vesovye neravenstva dlya potentsiala Danklya–Rissa”, Chebyshevskii sb., 20:1 (2019), 131–147  mathnet  crossref
    10. D. V. Gorbachev, V. I. Ivanov, “Usloviya Makenkhauta dlya kusochno-stepennykh vesov v evklidovom prostranstve s meroi Danklya”, Chebyshevskii sb., 20:2 (2019), 82–92  mathnet  crossref
    11. Karapetyan G.A. Khachaturyan M.A., “Limiting Embedding Theorems For Multianisotropic Functional Spaces”, J. Contemp. Math. Anal.-Armen. Aca., 54:2 (2019), 103–111  crossref  isi
    12. O. V. Troshkin, “On smooth vortex catastrophe of uniqueness for stationary flows of an ideal fluid”, Comput. Math. Math. Phys., 59:10 (2019), 1742–1752  mathnet  crossref  crossref  isi  elib
    13. G. A. Karapetyan, M. K. Arakelyan, “Embedding Theorems for General Multianisotropic Spaces”, Math. Notes, 104:3 (2018), 417–430  mathnet  crossref  crossref  mathscinet  isi  elib
    14. I. A. Ikromov, S. E. Usmanov, “Ob ogranichennosti maksimalnykh operatorov, svyazannykh s giperpoverkhnostyami”, Sovremennye problemy matematiki i fiziki, SMFN, 64, no. 4, Rossiiskii universitet druzhby narodov, M., 2018, 650–681  mathnet  crossref
    15. G. A. Karapetyan, H. A. Petrosyan, “Embedding theorems for multianisotropic spaces with two vertices of anisotropicity”, Uch. zapiski EGU, ser. Fizika i Matematika, 51:1 (2017), 29–37  mathnet
    16. T. Nogayama, Y. Sawano, “Compactness of the Commutators Generated by Lipschitz Functions and Fractional Integral Operators”, Math. Notes, 102:5 (2017), 687–697  mathnet  crossref  crossref  mathscinet  isi  elib
    17. G. A. Karapetyan, “Integral representation and embedding theorems for n-dimensional multianisotropic spaces with one anisotropic vertex”, Siberian Math. J., 58:3 (2017), 445–460  mathnet  crossref  crossref  isi  elib  elib
    18. G. A. Karapetyan, “Integral representation of functions and embedding theorems for multianisotropic spaces in the three-dimensional case”, Eurasian Math. J., 7:2 (2016), 19–37  mathnet
    19. N. Temirgaliev, M. A. Zhainibekova, G. T. Dzhumakaeva, “A criterion for embedding of anisotropic Sobolev–Morrey spaces into the space of uniformly continuous functions”, Siberian Math. J., 57:5 (2016), 905–917  mathnet  crossref  crossref  isi  elib
    20. Vasil'eva A.A., “Embedding theorems for a weighted Sobolev class in the space L q,v with weights having a singularity at a point: Case v L q 1”, Russ. J. Math. Phys., 23:3 (2016), 392–424  crossref  mathscinet  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1936–1946 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:3292
    Full-text PDF :1561
    First page:2
     
      Contact us:
    math-net2025_03@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025