Loading [MathJax]/jax/output/SVG/config.js
Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2019, Volume 59, Number 10, Pages 1803–1814
DOI: https://doi.org/10.1134/S0044466919100132
(Mi zvmmf10974)
 

This article is cited in 1 scientific paper (total in 1 paper)

On smooth vortex catastrophe of uniqueness for stationary flows of an ideal fluid

O. V. Troshkin

Scientific Research Institute for System Analysis, Federal Research Center, Russian Academy of Sciences, Moscow, 117218 Russia
Citations (1)
References:
Abstract: It is well known that the steady-state plane-parallel or spatial axisymmetric flow of an ideal incompressible fluid in a finite-length plane channel or pipe that can be decomposed in powers of spatial coordinates (i.e., is an analytical and, hence, exactly computable flow) is uniquely determined by the inflow vorticity. Under the same boundary conditions, an infinite number of uncomputable phantoms, i.e., infinitely smooth, but nonanalytical flows exist if the domain of a unique analytical flow contains a sufficiently intense vortex cell where the maximum principle is violated for the stream function. A scheme for obtaining an uncomputable vortex phantom for the Euler fluid dynamics equations is described in detail below.
Key words: steady-state ideal incompressible fluid, plane or axisymmetric finite channel, inflow vorticity, unique analytical flow, violation of the maximum principle, nonuniqueness of smooth nonanalytical flows.
Funding agency Grant number
Russian Academy of Sciences - Federal Agency for Scientific Organizations AAAA-A19-119011590092-6
Received: 08.11.2018
Revised: 08.11.2018
Accepted: 10.06.2019
English version:
Computational Mathematics and Mathematical Physics, 2019, Volume 59, Issue 10, Pages 1742–1752
DOI: https://doi.org/10.1134/S0965542519100130
Bibliographic databases:
Document Type: Article
UDC: 517.951
Language: Russian
Citation: O. V. Troshkin, “On smooth vortex catastrophe of uniqueness for stationary flows of an ideal fluid”, Zh. Vychisl. Mat. Mat. Fiz., 59:10 (2019), 1803–1814; Comput. Math. Math. Phys., 59:10 (2019), 1742–1752
Citation in format AMSBIB
\Bibitem{Tro19}
\by O.~V.~Troshkin
\paper On smooth vortex catastrophe of uniqueness for stationary flows of an ideal fluid
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2019
\vol 59
\issue 10
\pages 1803--1814
\mathnet{http://mi.mathnet.ru/zvmmf10974}
\crossref{https://doi.org/10.1134/S0044466919100132}
\elib{https://elibrary.ru/item.asp?id=39524421}
\transl
\jour Comput. Math. Math. Phys.
\yr 2019
\vol 59
\issue 10
\pages 1742--1752
\crossref{https://doi.org/10.1134/S0965542519100130}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000501844700014}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85074301289}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf10974
  • https://www.mathnet.ru/eng/zvmmf/v59/i10/p1803
  • This publication is cited in the following 1 articles:
    1. O. V. Troshkin, “Vortex phantoms in the stationary Kochin–Yudovich flow problem”, Comput. Math. Math. Phys., 61:4 (2021), 664–667  mathnet  mathnet  crossref  crossref  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:166
    References:31
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025