Loading [MathJax]/jax/output/CommonHTML/jax.js
Chebyshevskii Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Chebyshevskii Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Chebyshevskii Sbornik, 2019, Volume 20, Issue 1, Pages 131–147
DOI: https://doi.org/10.22405/2226-8383-2018-20-1-131-147
(Mi cheb722)
 

This article is cited in 6 scientific papers (total in 6 papers)

Weighted inequalities for Dunkl–Riesz potential

D. V. Gorbachev, V. I. Ivanov

Tula State University, Tula
Full-text PDF (685 kB) Citations (6)
References:
Abstract: For the classical Riesz potential or the fractional integral Iα, the Hardy–Littlewood– Sobolev–Stein–Weiss (Lp,Lq)-boundedness conditions with power weights are well known. Using the Fourier transform F, the Riesz potential is determined by the equality F(Iαf)(y)= =|y|αF(f)(y). An important generalization of the Fourier transform became the Dunkl transform Fk(f), acting in Lebesgue spaces with Dunkl's weight, defined by the root system RRd, its reflection group G and a non-negative multiplicity function k on R, invariant with respect to G. S. Thangavelu and Yu. Xu using the equality Fk(Ikαf)(y)=|y|αFk(f)(y) determined the D-Riesz potential Ikα. For the D-Riesz potential, the boundedness conditions in Lebesgue spaces with Dunkl weight and power weights, similar to the conditions for the Riesz potential, were also proved. At the conference "Follow-up Approximation Theory and Function Spaces"   in the Centre de Recerca Matemàtica (CRM, Barcelona, 2017) M. L. Goldman raised the question about (Lp,Lq)-boundedness conditions of the D-Riesz potential with piecewise-power weights. Consideration of piecewise-power weights makes it possible to reveal the influence of the behavior of weights at zero and infinity on the boundedness of the D-Riesz potential. This paper provides a complete answer to this question. In particular, in the case of the Riesz potential, necessary and sufficient conditions are obtained. As auxiliary results, necessary and sufficient conditions for the boundedness of the Hardy and Bellman operators are proved in Lebesgue spaces with Dunkl weight and piecewise-power weights.
Keywords: Fourier transform, Riesz potential, Dunkl transform, D-Riesz potential.
Funding agency Grant number
Russian Science Foundation 18-11-00199
This Research was performed by a grant of Russian Science Foundation (project 18-11-00199).
Received: 13.02.2019
Accepted: 10.04.2019
Document Type: Article
UDC: 517.5
Language: Russian
Citation: D. V. Gorbachev, V. I. Ivanov, “Weighted inequalities for Dunkl–Riesz potential”, Chebyshevskii Sb., 20:1 (2019), 131–147
Citation in format AMSBIB
\Bibitem{GorIva19}
\by D.~V.~Gorbachev, V.~I.~Ivanov
\paper Weighted inequalities for Dunkl--Riesz potential
\jour Chebyshevskii Sb.
\yr 2019
\vol 20
\issue 1
\pages 131--147
\mathnet{http://mi.mathnet.ru/cheb722}
\crossref{https://doi.org/10.22405/2226-8383-2018-20-1-131-147}
Linking options:
  • https://www.mathnet.ru/eng/cheb722
  • https://www.mathnet.ru/eng/cheb/v20/i1/p131
  • This publication is cited in the following 6 articles:
    1. V. I. Ivanov, “Riesz Transform for the One-Dimensional (k,1)-Generalized Fourier Transform”, Math. Notes, 113:3 (2023), 356–367  mathnet  crossref  crossref  mathscinet
    2. V. I. Ivanov, “Lebegova ogranichennost potentsiala Rissa dlya (k,1)-obobschennogo preobrazovaniya Fure s radialnymi kusochno-stepennymi vesami”, Chebyshevskii sb., 23:4 (2022), 92–104  mathnet  crossref
    3. V. I. Ivanov, “Neravenstva dlya preobrazovanii Danklya–Rissa i gradienta Danklya s radialnymi kusochno-stepennymi vesami”, Chebyshevskii sb., 22:3 (2021), 122–132  mathnet  crossref
    4. V. I. Ivanov, “Potentsial Rissa dlya (k,1)-obobschennogo preobrazovaniya Fure”, Chebyshevskii sb., 22:4 (2021), 114–135  mathnet  crossref
    5. V. I. Ivanov, “Vesovye neravenstva dlya preobrazovanii Danklya — Rissa i gradienta Danklya”, Chebyshevskii sb., 21:4 (2020), 97–106  mathnet  crossref
    6. D. V. Gorbachev, V. I. Ivanov, “Usloviya Makenkhauta dlya kusochno-stepennykh vesov v evklidovom prostranstve s meroi Danklya”, Chebyshevskii sb., 20:2 (2019), 82–92  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:230
    Full-text PDF :74
    References:42
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025