Loading [MathJax]/jax/output/SVG/config.js
Izvestiya Akademii Nauk SSSR. Seriya Matematicheskaya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Akademii Nauk SSSR. Seriya Matematicheskaya, 1966, Volume 30, Issue 1, Pages 133–174 (Mi im2823)  

This article is cited in 10 scientific papers (total in 10 papers)

On $n$-dimensional compact complex manifolds having $n$ algebraically independent meromorphic functions. I

B. G. Moishezon
Received: 22.04.1965
Bibliographic databases:
UDC: 513.6
Language: Russian
Citation: B. G. Moishezon, “On $n$-dimensional compact complex manifolds having $n$ algebraically independent meromorphic functions. I”, Izv. Math., 30:1 (1966)
Citation in format AMSBIB
\Bibitem{Moi66}
\by B.~G.~Moishezon
\paper On $n$-dimensional compact complex manifolds having $n$ algebraically independent meromorphic functions.~I
\jour Izv. Math.
\yr 1966
\vol 30
\issue 1
\mathnet{http://mi.mathnet.ru/eng/im2823}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=216522}
\zmath{https://zbmath.org/?q=an:0161.17802}
Linking options:
  • https://www.mathnet.ru/eng/im2823
  • https://www.mathnet.ru/eng/im/v30/i1/p133
    Cycle of papers
    This publication is cited in the following 10 articles:
    1. Yu. G. Prokhorov, K. A. Shramov, “Finite groups of bimeromorphic selfmaps of uniruled Kähler threefolds”, Izv. Math., 84:5 (2020), 978–1001  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    2. Yu. G. Prokhorov, K. A. Shramov, “Automorphism Groups of Moishezon Threefolds”, Math. Notes, 106:4 (2019), 651–655  mathnet  crossref  crossref  mathscinet  isi  elib
    3. V. A. Krasnov, “Equivariant Topological Classification of the Fano Varieties of Real Four-Dimensional Cubics”, Math. Notes, 85:4 (2009), 574–583  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    4. Markushevich D., Tikhomirov A.S., “New symplectic V-manifolds of dimension four via the relative compactified Prymian”, International Journal of Mathematics, 18:10 (2007), 1187–1224  crossref  isi
    5. A. S. Tikhomirov, T. L. Troshina, “Birational and numerical geometry of the variety of complete pairs of two-point spaces of an algebraic surface”, Math. Notes, 65:3 (1999), 344–350  mathnet  crossref  crossref  mathscinet  zmath  isi
    6. F. A. Griffits, P. Delin, D. Morgan, D. Syullivan, “Veschestvennaya gomotopicheskaya teoriya kelerovykh mnogoobrazii”, UMN, 32:3(195) (1977), 119–152  mathnet  mathscinet  zmath
    7. M. Artin, “Algebraicheskie prostranstva”, UMN, 26:1(157) (1971), 181–205  mathnet  zmath
    8. B. G. Moishezon, “The algebraic analog of compact complex spaces with a sufficiently large field of meromorphic functions. I”, Math. USSR-Izv., 3:1 (1969), 167–226  mathnet  crossref  mathscinet  zmath
    9. B. G. Moishezon, “The Castelnuovo–Enriques contraction theorem for arbitrary dimension”, Math. USSR-Izv., 3:5 (1969), 917–966  mathnet  crossref  mathscinet  zmath
    10. B. G. Moishezon, “Resolution theorems for compact complex spaces with a sufficiently large field of meromorphic functions”, Math. USSR-Izv., 1:6 (1967), 1331–1356  mathnet  crossref  mathscinet  zmath
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Академии наук СССР. Серия математическая
    Statistics & downloads:
    Abstract page:1197
    Full-text PDF :487
    First page:1
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025