Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2020, Volume 84, Issue 5, Pages 978–1001
DOI: https://doi.org/10.1070/IM8983
(Mi im8983)
 

This article is cited in 9 scientific papers (total in 9 papers)

Finite groups of bimeromorphic selfmaps of uniruled Kähler threefolds

Yu. G. Prokhorovab, K. A. Shramovab

a Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
b Laboratory of algebraic geometry and its applications, National Research University "Higher School of Economics" (HSE), Moscow
References:
Abstract: We classify uniruled compact Kähler threefolds whose groups of bimeromorphic selfmaps do not have the Jordan property.
Keywords: Jordan group, Kähler manifold, bimeromorphic map, rationally connected fibration.
Funding agency Grant number
Russian Science Foundation 18-11-00121
This work was supported by the Russian Science Foundation under grant no. 18-11-00121.
Received: 28.10.2019
Revised: 10.02.2020
Bibliographic databases:
Document Type: Article
UDC: 512.7
MSC: 14E07
Language: English
Original paper language: Russian
Citation: Yu. G. Prokhorov, K. A. Shramov, “Finite groups of bimeromorphic selfmaps of uniruled Kähler threefolds”, Izv. Math., 84:5 (2020), 978–1001
Citation in format AMSBIB
\Bibitem{ProShr20}
\by Yu.~G.~Prokhorov, K.~A.~Shramov
\paper Finite groups of~bimeromorphic selfmaps of~uniruled K\"ahler threefolds
\jour Izv. Math.
\yr 2020
\vol 84
\issue 5
\pages 978--1001
\mathnet{http://mi.mathnet.ru/eng/im8983}
\crossref{https://doi.org/10.1070/IM8983}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4153663}
\zmath{https://zbmath.org/?q=an:1456.14020}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2020IzMat..84..978P}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000586483700001}
\elib{https://elibrary.ru/item.asp?id=45174400}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85095113635}
Linking options:
  • https://www.mathnet.ru/eng/im8983
  • https://doi.org/10.1070/IM8983
  • https://www.mathnet.ru/eng/im/v84/i5/p169
  • This publication is cited in the following 9 articles:
    1. Konstantin Loginov, “Jordan property for groups of bimeromorphic self-maps of complex manifolds with large Kodaira dimension”, Math. Z., 309:2 (2025)  crossref
    2. Tatiana Bandman, Yuri G. Zarhin, “Jordan Groups and Geometric Properties of Manifolds”, Arnold Math J., 2024  crossref
    3. A. S. Golota, “Finite abelian subgroups in the groups of birational and bimeromorphic selfmaps”, Izv. Math., 88:5 (2024), 856–872  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    4. A. S. Golota, “Jordan property for groups of bimeromorphic automorphisms of compact Kähler threefolds”, Sb. Math., 214:1 (2023), 28–38  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    5. Russian Math. Surveys, 78:1 (2023), 1–64  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    6. Yu. G. Prokhorov, С. A. Shramov, “Finite groups of bimeromorphic self-maps of nonuniruled Kähler threefolds”, Sb. Math., 213:12 (2022), 1695–1714  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    7. F. Bogomolov, N. Kurnosov, A. Kuznetsova, E. Yasinsky, “Geometry and automorphisms of non-Kähler holomorphic symplectic manifolds”, Int. Math. Res. Not. IMRN, 2022:16 (2022), 12302–12341  crossref  mathscinet  zmath
    8. Yu. G. Prokhorov, “Equivariant minimal model program”, Russian Math. Surveys, 76:3 (2021), 461–542  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    9. Tatiana Bandman, Yuri G. Zarhin, “Bimeromorphic automorphism groups of certain P1-bundles”, Eur. J. Math., 7:2 (2021), 641–670  crossref  mathscinet  zmath
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:509
    Russian version PDF:55
    English version PDF:45
    References:69
    First page:16
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025