Abstract:
The “Chow lemma” and theorems on the resolution of singularities and of the points of indeterminacy of meromorphic mappings are proved for n-dimensional compact complex spaces with n algebraically independent meromorphic functions. It is established that any such space may be made into a projective algebraic variety by a finite number of monoidal transformations with nonsingular centers.
Citation:
B. G. Moishezon, “Resolution theorems for compact complex spaces with a sufficiently
large field of meromorphic functions”, Math. USSR-Izv., 1:6 (1967), 1331–1356
\Bibitem{Moi67}
\by B.~G.~Moishezon
\paper Resolution theorems for compact complex spaces with a sufficiently
large field of meromorphic functions
\jour Math. USSR-Izv.
\yr 1967
\vol 1
\issue 6
\pages 1331--1356
\mathnet{http://mi.mathnet.ru/eng/im2594}
\crossref{https://doi.org/10.1070/IM1967v001n06ABEH000624}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=222917}
\zmath{https://zbmath.org/?q=an:0186.26205}
Linking options:
https://www.mathnet.ru/eng/im2594
https://doi.org/10.1070/IM1967v001n06ABEH000624
https://www.mathnet.ru/eng/im/v31/i6/p1385
This publication is cited in the following 8 articles:
Charles Vuono, “Kähler Moišezon spaces which are projective algebraic”, Proc. Amer. Math. Soc., 123:3 (1995), 779
V. Ancona, Vo Van Tan, “Embedding Moishezon spaces into 1-convex spaces”, Math. Ann., 247:2 (1980), 143
Kazuhisa Maehara, “Family of varieties dominated by a variety”, Proc. Japan Acad. Ser. A Math. Sci., 55:4 (1979)
Junjiro Noguchi, “Meromorphic mappings into a compact complex space”, Hiroshima Math. J., 7:2 (1977)
Oswald Riemenschneider, “Characterizing Moi?ezon spaces by almost positive coherent analytic sheaves”, Math Z, 123:3 (1971), 263
Hans Grauert, Oswald Riemenschneider, “Verschwindungssätze für analytische Kohomologiegruppen auf komplexen Räumen”, Invent math, 11:4 (1970), 263
Hans Grauert, Oswald Riemenschneider, Lecture Notes in Mathematics, 155, Several Complex Variables I Maryland 1970, 1970, 97
B. G. Moishezon, “The algebraic analog of compact complex spaces with a sufficiently large field of meromorphic functions. I”, Math. USSR-Izv., 3:1 (1969), 167–226