Mathematics of the USSR-Izvestiya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Izvestiya, 1967, Volume 1, Issue 6, Pages 1331–1356
DOI: https://doi.org/10.1070/IM1967v001n06ABEH000624
(Mi im2594)
 

This article is cited in 8 scientific papers (total in 8 papers)

Resolution theorems for compact complex spaces with a sufficiently large field of meromorphic functions

B. G. Moishezon
References:
Abstract: The “Chow lemma” and theorems on the resolution of singularities and of the points of indeterminacy of meromorphic mappings are proved for n-dimensional compact complex spaces with n algebraically independent meromorphic functions. It is established that any such space may be made into a projective algebraic variety by a finite number of monoidal transformations with nonsingular centers.
Received: 30.03.1967
Bibliographic databases:
UDC: 513.6
MSC: 32S45, 30D30, 14N05
Language: English
Original paper language: Russian
Citation: B. G. Moishezon, “Resolution theorems for compact complex spaces with a sufficiently large field of meromorphic functions”, Math. USSR-Izv., 1:6 (1967), 1331–1356
Citation in format AMSBIB
\Bibitem{Moi67}
\by B.~G.~Moishezon
\paper Resolution theorems for compact complex spaces with a sufficiently
large field of meromorphic functions
\jour Math. USSR-Izv.
\yr 1967
\vol 1
\issue 6
\pages 1331--1356
\mathnet{http://mi.mathnet.ru/eng/im2594}
\crossref{https://doi.org/10.1070/IM1967v001n06ABEH000624}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=222917}
\zmath{https://zbmath.org/?q=an:0186.26205}
Linking options:
  • https://www.mathnet.ru/eng/im2594
  • https://doi.org/10.1070/IM1967v001n06ABEH000624
  • https://www.mathnet.ru/eng/im/v31/i6/p1385
  • This publication is cited in the following 8 articles:
    1. Charles Vuono, “Kähler Moišezon spaces which are projective algebraic”, Proc. Amer. Math. Soc., 123:3 (1995), 779  crossref
    2. V. Ancona, Vo Van Tan, “Embedding Moishezon spaces into 1-convex spaces”, Math. Ann., 247:2 (1980), 143  crossref
    3. Kazuhisa Maehara, “Family of varieties dominated by a variety”, Proc. Japan Acad. Ser. A Math. Sci., 55:4 (1979)  crossref
    4. Junjiro Noguchi, “Meromorphic mappings into a compact complex space”, Hiroshima Math. J., 7:2 (1977)  crossref
    5. Oswald Riemenschneider, “Characterizing Moi?ezon spaces by almost positive coherent analytic sheaves”, Math Z, 123:3 (1971), 263  crossref
    6. Hans Grauert, Oswald Riemenschneider, “Verschwindungssätze für analytische Kohomologiegruppen auf komplexen Räumen”, Invent math, 11:4 (1970), 263  crossref  mathscinet  zmath
    7. Hans Grauert, Oswald Riemenschneider, Lecture Notes in Mathematics, 155, Several Complex Variables I Maryland 1970, 1970, 97  crossref
    8. B. G. Moishezon, “The algebraic analog of compact complex spaces with a sufficiently large field of meromorphic functions. I”, Math. USSR-Izv., 3:1 (1969), 167–226  mathnet  crossref  mathscinet  zmath
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:531
    Russian version PDF:126
    English version PDF:34
    References:59
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025