Citation:
E. S. Vasilevskaya, T. A. Suslina, “Threshold approximations of a factorized selfadjoint operator family with the first and the second correctors taken into account”, Algebra i Analiz, 23:2 (2011), 102–146; St. Petersburg Math. J., 23:2 (2012), 275–308
\Bibitem{VasSus11}
\by E.~S.~Vasilevskaya, T.~A.~Suslina
\paper Threshold approximations of a~factorized selfadjoint operator family with the first and the second correctors taken into account
\jour Algebra i Analiz
\yr 2011
\vol 23
\issue 2
\pages 102--146
\mathnet{http://mi.mathnet.ru/aa1236}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2841674}
\zmath{https://zbmath.org/?q=an:1253.47012}
\elib{https://elibrary.ru/item.asp?id=20730108}
\transl
\jour St. Petersburg Math. J.
\yr 2012
\vol 23
\issue 2
\pages 275--308
\crossref{https://doi.org/10.1090/S1061-0022-2012-01197-0}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000302454300005}
\elib{https://elibrary.ru/item.asp?id=20488559}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84871457060}
Linking options:
https://www.mathnet.ru/eng/aa1236
https://www.mathnet.ru/eng/aa/v23/i2/p102
This publication is cited in the following 13 articles:
M. A. Dorodnyi, T. A. Suslina, “Porogovye approksimatsii funktsii ot faktorizovannogo operatornogo semeistva”, Algebra i analiz, 36:1 (2024), 95–161
T. A. Suslina, “Operator-theoretic approach to the homogenization of Schrödinger-type equations with periodic coefficients”, Russian Math. Surveys, 78:6 (2023), 1023–1154
V. A. Sloushch, T. A. Suslina, “Operator estimates for homogenization of higher-order elliptic operators with periodic coefficients”, St. Petersburg Math. J., 35:2 (2024), 327–375
T. A. Suslina, “Threshold approximations for the exponential of a factorized operator family with correctors taken into account”, St. Petersburg Math. J., 35:3 (2024), 537–570
Dorodnyi M.A., “Operator Error Estimates For Homogenization of the Nonstationary Schrodinger-Type Equations: Sharpness of the Results”, Appl. Anal., 2021
M. A. Dorodnyi, T. A. Suslina, “Homogenization of the hyperbolic equations with periodic coefficients in Rd: Sharpness of the results”, St. Petersburg Math. J., 32:4 (2021), 605–703
V. V. Zhikov, S. E. Pastukhova, “Asimptotika fundamentalnogo resheniya dlya uravneniya diffuzii v periodicheskoi srede na bolshikh vremenakh i ee primenenie k otsenkam teorii usredneniya”, Trudy Krymskoi osennei matematicheskoi shkoly-simpoziuma, SMFN, 63, no. 2, Rossiiskii universitet druzhby narodov, M., 2017, 223–246
Cardone G., “Waveguides With Fast Oscillating Boundary”, Nanosyst.-Phys. Chem. Math., 8:2 (2017), 160–165
S. E. Pastukhova, “Approximations of the Resolvent for a Non–Self-Adjoint Diffusion Operator with Rapidly Oscillating Coefficients”, Math. Notes, 94:1 (2013), 127–145
Yu. M. Meshkova, “Homogenization of the Cauchy problem for parabolic systems with periodic coefficients”, St. Petersburg Math. J., 25:6 (2014), 981–1019
Borisov D. Cardone G. Faella L. Perugia C., “Uniform Resolvent Convergence for Strip with Fast Oscillating Boundary”, J. Differ. Equ., 255:12 (2013), 4378–4402
Cardone G. Pastukhova S.E. Perugia C., “Estimates in Homogenization of Degenerate Elliptic Equations by Spectral Method”, Asymptotic Anal., 81:3-4 (2013), 189–209
E. S. Vasilevskaya, T. A. Suslina, “Homogenization of parabolic and elliptic periodic operators in L2(Rd) with the first and second correctors taken into account”, St. Petersburg Math. J., 24:2 (2013), 185–261