Аннотация:
Рассматривается геометрически линейная модель микрополярного упругого тела (моментного континуума, континуума Коссера). Обсуждаются подходы к моделированию деформации таких континуумов. В качестве мер деформации выбираются: симметричный тензор малой деформации, вектор относительного микровращения и пространственный градиент вектора полного микровращения. Сформулированы принцип виртуальных перемещений и его обобщение, полученное с помощью метода неопределенных множителей Лагранжа, на основе которых выполнено построение микрополярной теории упругости. Важнейшей отличительной особенностью выступает отсутствие в вариационном уравнении вкладов работ внутренних силовых факторов, что позволяет придать принципу виртуальных перемещений весьма простую аналитическую форму. Подробно исследуется модель гемитропного микрополярного тела. Работа может рассматриваться как скрипт основных уравнений теории линейной микрополярной упругости, которые последовательно выводятся из принципа виртуальных перемещений с помощью правила множителей Лагранжа и в итоге образуют универсальную ковариантную формулировку всей теории.
Работа выполнена по теме государственного задания (№ государственной регистрации AAAA–A17–117021310381–8) и при частичной финансовой поддержке Российского фонда фундаментальных исследований (проект № 18–01–00844_a «Моделирование термомеханических процессов в сложных средах с помощью принципа термомеханической ортогональности»).
Получение:15 июля 2018 г. Исправление:23 августа 2018 г. Принятие:3 сентября 2018 г. Публикация онлайн:23 сентября 2018 г.
Образец цитирования:
Ю. Н. Радаев, “Правило множителей в ковариантных формулировках микрополярных теорий механики континуума”, Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 22:3 (2018), 504–517
\RBibitem{Rad18}
\by Ю.~Н.~Радаев
\paper Правило множителей в ковариантных формулировках микрополярных теорий механики континуума
\jour Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки
\yr 2018
\vol 22
\issue 3
\pages 504--517
\mathnet{http://mi.mathnet.ru/vsgtu1635}
\crossref{https://doi.org/10.14498/vsgtu1635}
\elib{https://elibrary.ru/item.asp?id=36497377}
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/vsgtu1635
https://www.mathnet.ru/rus/vsgtu/v222/i3/p504
Эта публикация цитируется в следующих 41 статьяx:
Е. В. Мурашкин, Ю. Н. Радаев, “Двумерные фигуры Ная для гемитропных микрополярных упругих тел”, Изв. Сарат. ун-та. Нов. сер. Сер.: Математика. Механика. Информатика, 24:1 (2024), 109–122
E. V. Murashkin, Y. N. Radayev, “On Algebraic Triple Weights Formulation of Micropolar Thermoelasticity”, Mech. Solids, 59:1 (2024), 555
Т.К. Нестеров, “Plane harmonic waves in a hemitropic micropolar body”, Вестник Чувашского государственного педагогического университета им. И.Я. Яковлева. Серия: Механика предельного состояния, 2024, № 1(59), 115
E. V. Murashkin, Y. N. Radayev, “Theory of Poisson's Ratio for a Thermoelastic Micropolar Acentric Isotropic Solid”, Lobachevskii J Math, 45:5 (2024), 2378
E. Yu. Krylova, E. V. Murashkin, Y. N. Radaev, “The Nye Cells and Figures for Athermic Hemitropic, Isotropic, and Ultraisotropic Micropolar Elastic Solids”, Mech. Solids, 59:3 (2024), 1311
Е. В. Мурашкин, Ю. Н. Радаев, “Волновые числа гармонических плоских волн трансляционных и спинорных перемещений в полуизотропной термоупругой среде”, Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 28:3 (2024), 445–461
Е.В. Мурашкин, Н.Э. Стадник, “Мультивесовая теория слабых разрывов, распространяющихся в полуизотропной термоупругой микрополярной среде”, Вестник Чувашского государственного педагогического университета им. И.Я. Яковлева. Серия: Механика предельного состояния, 2024, № 2(60), 87
E. Yu. Krylova, E. V. Murashkin, Yu. N. Radaev, “The nye cells and figures for athermic hemitropic, isotropic and ultraisotropic micropolar elastic solids”, Izvestiâ Rossijskoj akademii nauk. Mehanika tverdogo tela, 2024, № 3
E. V. Murashkin, Y. N. Radayev, “Characteristic Constitutive Numbers in Semi-Isotropic Coupled Thermoelasticity”, Mech. Solids, 59:4 (2024), 1856
Е.В. Мурашкин, Ю.Н. Радаев, “Плоские гармонические термоупругие волны в ультрагемитропном микрополярном теле”, Вестник Чувашского государственного педагогического университета им. И.Я. Яковлева. Серия: Механика предельного состояния, 2024, № 2(60), 116
E. V. Murashkin, Yu. N. Radayev, “Coupled Harmonic Plane Waves in a Semi-Isotropic Thermoelastic Medium”, Mech. Solids, 59:4 (2024), 2387
Е.В. Мурашкин, “Обобщенные фигуры Ная для ультрагемитропных и ультраизотропных микрополярных упругих тел”, Вестник Чувашского государственного педагогического университета им. И.Я. Яковлева. Серия: Механика предельного состояния, 2024, № 3(61), 140
Е.В. Мурашкин, Ю.Н. Радаев, “Волновые числа связанной плоской термоупругой волны в ультраизотропной среде”, Вестник Чувашского государственного педагогического университета им. И.Я. Яковлева. Серия: Механика предельного состояния, 2024, № 3(61), 128
E. V. Murashkin, Yu. N. Radayev, “Plane Thermoelastic Waves in Ultrahemitropic Micropolar Solid”, Mech. Solids, 59:5 (2024), 3212
E. V. Murashkin, Yu. N. Radayev, “Wavenumbers of Doublet and Triplet Plane Thermoelastic Wave in Ultraisotropic Micropolar Medium”, Mech. Solids, 59:6 (2024), 3681
Y. N. Radaev, “Type-II Thermoelasticity of Linear Anisotropic Micropolar Media”, Mech. Solids, 59:6 (2024), 3408
E. V. Murashkin, Y. N. Radayev, “Polarization Vectors of Plane Waves in Semi-Isotropic Thermoelastic Micropolar Solids”, Mech. Solids, 59:7 (2024), 3880
Е. В. Мурашкин, Ю. Н. Радаев, “Термомеханические состояния гиротропных микрополярных тел”, Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 27:4 (2023), 659–678
Е.В. Мурашкин, “On a method of constructing nye figures for asymmetric theories of micropolar elasticity”, Вестник Чувашского государственного педагогического университета им. И.Я. Яковлева. Серия: Механика предельного состояния, 2023, № 3(57), 100
Yuri N. Radayev, Advanced Structured Materials, 185, Solid Mechanics, Theory of Elasticity and Creep, 2023, 275