Аннотация:
Установлена связь между цепочкой Склянина и преобразованиями Беклунда для уравнения Ландау–Лифшица. Показано, что стационарные решения цепочки определяют интегрируемое отображение, являющееся разновидностью классической спиновой цепочки Гейзенберга. Найдены некоторые многополевые обобщения.
Jing-Rui Wu, Xing-Biao Hu, “A Novel Discrete Integrable System Related to Hyper-Elliptic Curves of Genus Two”, Math Phys Anal Geom, 28:1 (2025)
Efremova L.S., “Geometrically Integrable Maps in the Plane and Their Periodic Orbits”, Lobachevskii J. Math., 42:10, SI (2021), 2315–2324
L.S. Efremova, “Small C
1-smooth perturbations of skew products and the partial integrability property”, Applied Mathematics and Nonlinear Sciences, 5:2 (2020), 317
Zhao P., Fan E., Temuerchaolu, “Quasiperiodic Solutions of the Heisenberg Ferromagnet Hierarchy”, J. Nonlinear Math. Phys., 26:3 (2019), 468–482
Suris Yu.B., “Discrete Time Toda Systems”, J. Phys. A-Math. Theor., 51:33 (2018)
Nijhoff F., Delice N., “On Elliptic Lax Pairs and Isomonodromic Deformation Systems For Elliptic Lattice Equations in Honour of Professor Noumi For the Occasion of His 60Th Birthday”, Representation Theory, Special Functions and Painleve Equations - Rims 2015, Advanced Studies in Pure Mathematics, 76, eds. Konno H., Sakai H., Shiraishi J., Suzuki T., Yamada Y., Math Soc Japan, 2018, 487–525
Delice N., Nijhoff F.W., Yoo-Kong S., “On Elliptic Lax Systems on the Lattice and a Compound Theorem For Hyperdeterminants”, J. Phys. A-Math. Theor., 48:3 (2015), 035206
В. Г. Марихин, “Действие как инвариант преобразований Беклунда лагранжевых систем”, ТМФ, 184:1 (2015), 71–78; V. G. Marikhin, “Action as an invariant of Bäcklund transformations for Lagrangian systems”, Theoret. and Math. Phys., 184:1 (2015), 953–960
Jennings P., Nijhoff F., “On an Elliptic Extension of the Kadomtsev-Petviashvili Equation”, J. Phys. A-Math. Theor., 47:5 (2014), 055205
Ф. Ханизаде, А. В. Михайлов, Дж. П. Ванг, “Преобразования Дарбу и рекурсионные операторы для дифференциально-разностных уравнений”, ТМФ, 177:3 (2013), 387–440; F. Khanizadeh, A. V. Mikhailov, Jing Ping Wang, “Darboux transformations and recursion operators for differential–difference equations”, Theoret. and Math. Phys., 177:3 (2013), 1606–1654
A. Shabat, Lecture Notes in Physics, 767, Integrability, 2009, 139
Adler, VE, “Classification of integrable Volterra-type lattices on the sphere: isotropic case”, Journal of Physics A-Mathematical and Theoretical, 41:14 (2008), 145201
Vsevolod E. Adler, Alexey B. Shabat, “On the One Class of Hyperbolic Systems”, SIGMA, 2 (2006), 093, 17 pp.
Yamilov, R, “Symmetries as integrability criteria for differential difference equations”, Journal of Physics A-Mathematical and General, 39:45 (2006), R541
Р. И. Ямилов, “Релятивистские цепочки Тоды и преобразования Шлезингера”, ТМФ, 139:2 (2004), 209–224; R. I. Yamilov, “Relativistic Toda Chains and Schlesinger Transformations”, Theoret. and Math. Phys., 139:2 (2004), 623–635
Adler, VE, “Q(4): Integrable master equation related to an elliptic curve”, International Mathematics Research Notices, 2004, no. 47, 2523
Nijhoff, FW, “Lax pair for the Adler (lattice Krichever-Novikov) system”, Physics Letters A, 297:1–2 (2002), 49
В. Э. Адлер, В. Г. Марихин, А. Б. Шабат, “Лагранжевы цепочки и канонические преобразования Беклунда”, ТМФ, 129:2 (2001), 163–183; V. E. Adler, V. G. Marikhin, A. B. Shabat, “Lagrangian Chains and Canonical Bäcklund Transformations”, Theoret. and Math. Phys., 129:2 (2001), 1448–1465
Suris, YB, “Integrable discretizations of some cases of the rigid body dynamics”, Journal of Nonlinear Mathematical Physics, 8:4 (2001), 534