Аннотация:
Обобщено на двумерный случай преобразование Миуры между решениями
КдФ и МКдФ. Введено интегрируемое уравнение, связанное с двумерным оператором Дирака, – модифицированное уравнение Веселова–Новикова.
Iskander A. Taimanov, “On a Formation of Singularities of Solutions to Soliton Equations Represented by L, A, B-triples”, Acta. Math. Sin.-English Ser., 40:1 (2024), 406
Joseph Adams, Axel Grünrock, “Low Regularity Local Well-Posedness for the Zero Energy Novikov–Veselov Equation”, SIAM J. Math. Anal., 55:1 (2023), 19
Хай-Фэн Ван, Юй-Фэн Чжан, “Метод $\bar\partial$-одевания для некоторых ($2+1$)-мерных интегрируемых спаренных систем”, ТМФ, 208:3 (2021), 452–470; Haifeng Wang, Yufeng Zhang, “$\bar\partial$-dressing method for a few ($2+1$)-dimensional integrable coupling systems”, Theoret. and Math. Phys., 208:3 (2021), 1239–1255
Patrik V. Nabelek, Vladimir E. Zakharov, “Solutions to the Kaup–Broer system and its (2+1) dimensional integrable generalization via the dressing method”, Physica D: Nonlinear Phenomena, 409 (2020), 132478
Damir Kurmanbayev, “Exact Solution of Modified Veselov–Novikov Equation and Some Applications in the Game Theory”, International Journal of Mathematics and Mathematical Sciences, 2020 (2020), 1
Chang J.-H., “The interactions of solitons in the Novikov–Veselov equation”, Appl. Anal., 95:6 (2016), 1370–1388
И. А. Тайманов, “Преобразование Мутара двумерных операторов Дирака и геометрия Мебиуса”, Матем. заметки, 97:1 (2015), 129–141; I. A. Taimanov, “The Moutard Transformation of Two-Dimensional Dirac Operators and Möbius Geometry”, Math. Notes, 97:1 (2015), 124–135
И. А. Тайманов, “Разрушающиеся решения модифицированного уравнения Веселова–Новикова и минимальные поверхности”, ТМФ, 182:2 (2015), 213–222; I. A. Taimanov, “Blowing up solutions of the modified Novikov–Veselov equation and
minimal surfaces”, Theoret. and Math. Phys., 182:2 (2015), 173–181
I. A. Taimanov, “A fast decaying solution to the modified Novikov-Veselov equation with a one-point singularity”, Dokl. Math., 91:1 (2015), 35
S. Y. Lou, “Consistent Riccati Expansion for Integrable Systems”, Stud Appl Math, 134:3 (2015), 372
Jen-Hsu Chang, “Mach-Type Soliton in the Novikov–Veselov Equation”, SIGMA, 10 (2014), 111, 14 pp.
Perry P.A., “Miura Maps and Inverse Scattering For the Novikov-Veselov Equation”, Anal. PDE, 7:2 (2014), 311–343
Anna Kazeykina, “Solitons and large time behavior of solutions of a multidimensional integrable equation”, Journées équations aux dérivées partielles, 2014, 1
Jen-Hsu Chang, “On the $N$-Solitons Solutions in the Novikov–Veselov Equation”, SIGMA, 9 (2013), 006, 13 pp.
Chang J.-H., “The Gould-Hopper polynomials in the Novikov-Veselov equation”, J Math Phys, 52:9 (2011), 092703
V. S. Novikov, E. V. Ferapontov, “On the classification of scalar evolutionary integrable equations in 2 + 1 dimensions”, Journal of Mathematical Physics, 52:2 (2011)
Takayuki Tsuchida, Aristophanes Dimakis, “On a (2 + 1)-dimensional generalization of the Ablowitz–Ladik lattice and a discrete Davey–Stewartson system”, J. Phys. A: Math. Theor., 44:32 (2011), 325206
Gökçe Başar, Gerald V. Dunne, “Gross-Neveu models, nonlinear Dirac equations, surfaces and strings”, J. High Energ. Phys., 2011:1 (2011)
Dmitry Zakharov, “A Discrete Analogue of the Dirac Operator and the Discrete Modified Novikov–Veselov Hierarchy”, International Mathematics Research Notices, 2010:18 (2010), 3463
C. Rogers, W. K. Schief, “Integrable Structure in the Theory of Stress Concentration in Shear-Strained Nonlinear Elastic Materials”, Studies in Applied Mathematics, 2010