Аннотация:
We construct the NN-solitons solution in the Novikov–Veselov equation from the extended Moutard transformation and the Pfaffian structure. Also, the corresponding wave functions are obtained explicitly. As a result, the property characterizing the NN-solitons wave function is proved using the Pfaffian expansion. This property corresponding to the discrete scattering data for NN-solitons solution is obtained in [arXiv:0912.2155] from the ¯∂¯¯¯∂-dressing method.
\RBibitem{Cha13}
\by Jen-Hsu~Chang
\paper On the $N$-Solitons Solutions in the Novikov--Veselov Equation
\jour SIGMA
\yr 2013
\vol 9
\papernumber 006
\totalpages 13
\mathnet{http://mi.mathnet.ru/sigma789}
\crossref{https://doi.org/10.3842/SIGMA.2013.006}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3033548}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000313820300001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84872773416}
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma789
https://www.mathnet.ru/rus/sigma/v9/p6
Эта публикация цитируется в следующих 4 статьяx:
Yurova A.A. Yurov V A. Yurov V.A., “The Cauchy Problem For the Generalized Hyperbolic Novikov-Veselov Equation Via the Moutard Symmetries”, Symmetry-Basel, 12:12 (2020), 2113
Chang J.-H., “The interactions of solitons in the Novikov–Veselov equation”, Appl. Anal., 95:6 (2016), 1370–1388
Zhu N., Pan Ch., Liu Zh., “Two kinds of important bifurcation phenomena of nonlinear waves in a generalized Novikov–Veselov equation”, Nonlinear Dyn., 83:3 (2016), 1311–1324
Jen-Hsu Chang, “Mach-Type Soliton in the Novikov–Veselov Equation”, SIGMA, 10 (2014), 111, 14 pp.