Аннотация:
Приведены доказательства утверждений, сформулированных в [1]. В качестве вспомогательного утверждения доказана интегро-локальная теорема для меры восстановления двумерного случайного блуждания.
Ключевые слова:
обобщенный процесс восстановления, большие уклонения, интегро-локальные теоремы, мера восстановления, условие Крамера, функция уклонений, вторая функция уклонений.
Образец цитирования:
А. А. Боровков, А. А. Могульский, “Интегро-локальные предельные теоремы для обобщенных процессов восстановления при выполнении условия Крамера. II”, Сиб. матем. журн., 59:4 (2018), 736–758; Siberian Math. J., 59:4 (2018), 578–597
Г. А. Бакай, “О характеризации вероятностей больших уклонений для регенерирующих последовательностей”, Ветвящиеся процессы и смежные вопросы, Сборник статей. К 75-летию со дня рождения Андрея Михайловича Зубкова и 70-летию со дня рождения Владимира Алексеевича Ватутина, Труды МИАН, 316, МИАН, М., 2022, 47–63; G. A. Bakay, “Characterization of Large Deviation Probabilities for Regenerative Sequences”, Proc. Steklov Inst. Math., 316 (2022), 40–56
А. В. Логачёв, А. А. Могульский, Е. И. Прокопенко, “Принцип больших уклонений для многомерных обобщенных процессов восстановления с приложением к связыванию полимеров”, Пробл. передачи информ., 58:2 (2022), 48–65; A. V. Logachov, A. A. Mogulskii, E. I. Prokopenko, “Large deviation principle for terminating multidimensional compound renewal processes with application to polymer pinning models”, Problems Inform. Transmission, 58:2 (2022), 144–159
А. В. Логачев, А. А. Могульский, “Принципы больших уклонений для процессов, допускающих вложенные обобщенные процессы восстановления”, Сиб. матем. журн., 63:1 (2022), 145–166; A. V. Logachov, A. A. Mogul'skii, “Large deviation principles for the processes admitting embedded compound renewal processes”, Siberian Math. J., 63:1 (2022), 119–137
Г. А. Бакай, “Большие уклонения для обрывающегося обобщенного процесса восстановления”, Теория вероятн. и ее примен., 66:2 (2021), 261–283; G. A. Bakay, “Large deviations for a terminating compound renewal process”, Theory Probab. Appl., 66:2 (2021), 209–227
M. Zamparo, “Large deviations in discrete-time renewal theory”, Stoch. Process. Their Appl., 139 (2021), 80–109
Artem Logachov, Anatolii Mogulskii, Evgeny Prokopenko, Anatoly Yambartsev, “Local theorems for (multidimensional) additive functionals of semi-Markov chains”, Stochastic Processes and their Applications, 137 (2021), 149
A. A. Mogul'skiǐ, E. I. Prokopenko, “The Large Deviation Principle for Finite-Dimensional Distributions of Multidimensional Renewal Processes”, Sib. Adv. Math., 31:3 (2021), 188
А. А. Боровков, “Граничные задачи для обобщенных процессов восстановления”, Сиб. матем. журн., 61:1 (2020), 29–59; A. A. Borovkov, “Boundary crossing problems for compound renewal processes”, Siberian Math. J., 61:1 (2020), 21–46
А. А. Могульский, Е. И. Прокопенко, “Принцип больших уклонений для конечномерных распределений многомерных обобщенных процессов восстановления”, Матем. тр., 23:2 (2020), 148–176
А. А. Боровков, “Точная асимптотика преобразования Лапласа над распределением обобщенного процесса восстановления и связанные с ней задачи”, Сиб. электрон. матем. изв., 17 (2020), 824–839
А. В. Логачёв, А. А. Могульский, “Локальные теоремы для конечномерных приращений арифметических многомерных обобщенных процессов восстановления при выполнении условия Крамера”, Сиб. электрон. матем. изв., 17 (2020), 1766–1786
А. А. Могульский, Е. И. Прокопенко, “Локальные теоремы для арифметических многомерных обобщенных процессов восстановления при выполнении условия Крамера”, Матем. тр., 22:2 (2019), 106–133; A. A. Mogul'skiǐ, E. I. Prokopenko, “Local theorems for arithmetic multidimensional compound renewal processes under Cramér's condition”, Siberian Adv. Math., 30:4 (2020), 284–302
А. А. Боровков, “Интегро-локальные теоремы в граничных задачах для обобщенных процессов восстановления”, Сиб. матем. журн., 60:6 (2019), 1229–1246; A. A. Borovkov, “Integro-local theorems in boundary crossing problems for compound renewal processes”, Siberian Math. J., 60:6 (2019), 957–972
А. А. Боровков, А. А. Могульский, Е. И. Прокопенко, “Свойства функции уклонений обобщенного процесса восстановления и асимптотика преобразования Лапласа над его распределением”, Теория вероятн. и ее примен., 64:4 (2019), 625–641; A. A. Borovkov, A. A. Mogul'skii, E. I. Prokopenko, “Properties of the deviation rate function and the asymptotics for the Laplace thansform of the distribution of a compound renewal process”, Theory Probab. Appl., 64:4 (2020), 499–512