Аннотация:
Работа посвящена подробному изложению результатов, объявленных в заметке В. В. Федорчука “Совместимость некоторых теорем общей типологии с аксиомами теории множеств”, ДАН СССР, 220, № 4 (1975), 786–788.
Библиография: 18 названий.
Образец цитирования:
В. В. Федорчук, “Вполне замкнутые отображения и совместимость некоторых теорем общей топологии с аксиомами теории множеств”, Матем. сб., 99(141):1 (1976), 3–33; V. V. Fedorchuk, “Fully closed mappings and the consistency of some theorems of general topology with the axioms of set theory”, Math. USSR-Sb., 28:1 (1976), 1–26
\RBibitem{Fed76}
\by В.~В.~Федорчук
\paper Вполне замкнутые отображения и~совместимость некоторых теорем общей топологии с~аксиомами теории множеств
\jour Матем. сб.
\yr 1976
\vol 99(141)
\issue 1
\pages 3--33
\mathnet{http://mi.mathnet.ru/sm2702}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=410631}
\zmath{https://zbmath.org/?q=an:0357.54018}
\transl
\by V.~V.~Fedorchuk
\paper Fully closed mappings and the consistency of some theorems of general topology with the axioms of set theory
\jour Math. USSR-Sb.
\yr 1976
\vol 28
\issue 1
\pages 1--26
\crossref{https://doi.org/10.1070/SM1976v028n01ABEH001637}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1976EM69000001}
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sm2702
https://www.mathnet.ru/rus/sm/v141/i1/p3
Эта публикация цитируется в следующих 37 статьяx:
Jerzy Kąkol, Wiesław Kubiś, Manuel López-Pellicer, Damian Sobota, Developments in Mathematics, 24, Descriptive Topology in Selected Topics of Functional Analysis, 2025, 495
PIOTR BORODULIN–NADZIEJA, DAMIAN SOBOTA, “ON SEQUENCES OF HOMOMORPHISMS INTO MEASURE ALGEBRAS AND THE EFIMOV PROBLEM”, J. symb. log., 88:1 (2023), 191
Jerzy Ka̧kol, Wiesław Śliwa, “On metrizable subspaces and quotients of non-Archimedean spaces Cp(X,K)”, RACSAM, 114:3 (2020)
Jerzy Kąkol, Springer Proceedings in Mathematics & Statistics, 286, Descriptive Topology and Functional Analysis II, 2019, 175
J. Ka̧kol, W. Śliwa, “Efimov spaces and the separable quotient problem for spaces C(K)”, Journal of Mathematical Analysis and Applications, 457:1 (2018), 104
Taras Banakh, Jerzy Ka̧kol, Wiesław Śliwa, “Metrizable quotients of C-spaces”, Topology and its Applications, 249 (2018), 95
Alan Dow, Roberto Pichardo-Mendoza, “Efimovʼs problem and Boolean algebras”, Topology and its Applications, 2013
Istvan Juhasz, “Ken Kunen, the Set-Theoretic Topologist”, Topology Appl., 158:18, SI (2011), 2460–2462
Geschke S., “The Coinitialities of Efimov Spaces”, Set Theory and its Applications, Contemporary Mathematics, 533, eds. Babinkostova L., Caicedo A., Geschke S., Scheepers M., Amer Mathematical Soc, 2011, 259–265
W.W. Comfort, S.U. Raczkowski, F.J. Trigos-Arrieta, “Making group topologies with, and without, convergent sequences”, Appl.Gen.Topol., 7:1 (2006), 109
Dow A., “Efimov Spaces and the Splitting Number”, Topology Proceedings, Vol 29, No 1, 2005, Topology Proceedings (Monographic Series), 29, no. 1, ed. Dydak J., Auburn Univ, 2005, 105–113
В. В. Федорчук, “Вполне замкнутые отображения и их приложения”, Фундамент. и прикл. матем., 9:4 (2003), 105–235; V. V. Fedorchuk, “Fully closed mappings and their applications”, J. Math. Sci., 136:5 (2006), 4201–4292
Balogh Z., “On Density and the Number of G(Delta)-Points in Somewhat Lindelof Spaces”, Topology Proceedings, Vol 27, No 1, 2003, Topology Proceedings (Monographic Series), ed. Dydak J., Auburn Univ, 2003, 9–14
В. В. Федорчук, “О некоторых вопросах топологической теории размерности”, УМН, 57:2(344) (2002), 139–178; V. V. Fedorchuk, “On some problems of topological dimension theory”, Russian Math. Surveys, 57:2 (2002), 361–398
James E. Baumgartner, Franklin D. Tall, “Reflecting Lindelöfness”, Topology and its Applications, 122:1-2 (2002), 35
Alessandro Fedeli, Attilio Le Donne, “On good connected preimages”, Topology and its Applications, 125:3 (2002), 489
Arhangel'skii A., “Some Open Problems on Homogeneous Compacta”, Paul Erdos and His Mathematics II, Bolyai Society Mathematical Studies, 11, eds. Halasz G., Lovasz L., Simonovits M., Sos V., Springer-Verlag Berlin, 2002, 15–31