Журнал вычислительной математики и математической физики
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Ж. вычисл. матем. и матем. физ.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Журнал вычислительной математики и математической физики, 1994, том 34, номер 4, страницы 608–616 (Mi zvmmf2578)  

Эта публикация цитируется в 21 научных статьях (всего в 21 статьях)

Исследование одного алгоритма аппроксимации выпуклых тел

Г. К. Каменев

Москва
Список литературы:
Аннотация: Исследуется скорость сходимости и эффективность одного адаптивного алгоритма аппроксимации выпуклых компактных тел многогранниками. Исследуемый алгоритм позволяет получать полиэдральную аппроксимацию за конечное число вычислений значения опорной функции и является оптимальным по порядку числа вершин аппроксимирующих многогранников для класса выпуклых тел с дважды непрерывно дифференцируемой границей.
Поступила в редакцию: 13.01.1993
Реферативные базы данных:
Тип публикации: Статья
УДК: 519.1:514.17
MSC: Primary 65D18; Secondary 52B55
Образец цитирования: Г. К. Каменев, “Исследование одного алгоритма аппроксимации выпуклых тел”, Ж. вычисл. матем. и матем. физ., 34:4 (1994), 608–616; Comput. Math. Math. Phys., 34:4 (1994), 521–528
Цитирование в формате AMSBIB
\RBibitem{Kam94}
\by Г.~К.~Каменев
\paper Исследование одного алгоритма аппроксимации выпуклых тел
\jour Ж. вычисл. матем. и матем. физ.
\yr 1994
\vol 34
\issue 4
\pages 608--616
\mathnet{http://mi.mathnet.ru/zvmmf2578}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1272906}
\zmath{https://zbmath.org/?q=an:0820.65100}
\transl
\jour Comput. Math. Math. Phys.
\yr 1994
\vol 34
\issue 4
\pages 521--528
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1994PF95400011}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/zvmmf2578
  • https://www.mathnet.ru/rus/zvmmf/v34/i4/p608
  • Эта публикация цитируется в следующих 21 статьяx:
    1. Р. В. Ефремов, “Сложность методов аппроксимации выпуклых компактных тел многогранниками двойного описания и ее оценки для гипершара”, Ж. вычисл. матем. и матем. физ., 59:7 (2019), 1264–1274  mathnet  crossref  elib; R. V. Efremov, “Complexity of methods for approximating convex compact bodies by double description polytopes and complexity bounds for a hyperball”, Comput. Math. Math. Phys., 59:7 (2019), 1204–1213  crossref  isi
    2. Г. К. Каменев, “Эффективность метода уточнения оценок при аппроксимации многомерных шаров многогранниками”, Ж. вычисл. матем. и матем. физ., 56:5 (2016), 756–767  mathnet  crossref  elib; G. K. Kamenev, “Efficiency of the estimate refinement method for polyhedral approximation of multidimensional balls”, Comput. Math. Math. Phys., 56:5 (2016), 744–755  crossref  isi
    3. Г. К. Каменев, “Асимптотические свойства метода уточнения оценок при аппроксимации многомерных шаров многогранниками”, Ж. вычисл. матем. и матем. физ., 55:10 (2015), 1647–1660  mathnet  crossref  mathscinet  elib; G. K. Kamenev, “Asymptotic properties of the estimate refinement method in polyhedral approximation of multidimensional balls”, Comput. Math. Math. Phys., 55:10 (2015), 1619–1632  crossref  isi  elib
    4. Р. В. Ефремов, “О сходимости хаусдорфовых методов аппроксимации оболочки Эджворта–Парето компактного множества”, Ж. вычисл. матем. и матем. физ., 55:11 (2015), 1803–1811  mathnet  crossref  mathscinet  elib; R. V. Efremov, “Convergence of hausdorff approximation methods for the Edgeworth–Pareto hull of a compact set”, Comput. Math. Math. Phys., 55:11 (2015), 1771–1778  crossref  isi
    5. А. В. Лотов, Т. С. Майская, “Неадаптивные методы полиэдральной аппроксимации оболочки Эджворта–Парето, использующие субоптимальные метрические сети на сфере направлений”, Ж. вычисл. матем. и матем. физ., 52:1 (2012), 35–47  mathnet  mathscinet  zmath  adsnasa  elib; A. V. Lotov, T. S. Maiskaya, “Nonadaptive methods for polyhedral approximation of the Edgeworth–Pareto hull using suboptimal coverings on the direction sphere”, Comput. Math. Math. Phys., 52:1 (2012), 31–42  crossref  isi  elib
    6. Efremov R.V., Kamenev G.K., “Properties of a method for polyhedral approximation of the feasible criterion set in convex multiobjective problems”, Annals of Operations Research, 166:1 (2009), 271–279  crossref  mathscinet  zmath  isi
    7. Efremov R., Kamenev G., “Optimality of the Methods for Approximating the Feasible Criterion Set in the Convex Case”, Multiobjective Programming and Goal Programming: Theoretical Results and Practical Applications, Lecture Notes in Economics and Mathematical Systems, 618, 2009, 25–33  crossref  zmath  isi
    8. Г. К. Каменев, “Скорость сходимости адаптивных методов полиэдральной аппроксимации выпуклых тел на начальном этапе”, Ж. вычисл. матем. и матем. физ., 48:5 (2008), 763–778  mathnet  mathscinet  zmath; G. K. Kamenev, “The initial convergence rate of adaptive methods for polyhedral approximation of convex bodies”, Comput. Math. Math. Phys., 48:5 (2008), 724–738  crossref  isi
    9. Г. К. Каменев, “Теория двойственности оптимальных адаптивных методов полиэдральной аппроксимации выпуклых тел”, Ж. вычисл. матем. и матем. физ., 48:3 (2008), 397–417  mathnet  mathscinet  zmath; G. K. Kamenev, “Duality theory of optimal adaptive methods for polyhedral approximation of convex bodies”, Comput. Math. Math. Phys., 48:3 (2008), 376–394  crossref  isi
    10. Е. М. Бронштейн, “Аппроксимация выпуклых множеств многогранниками”, Геометрия, СМФН, 22, РУДН, М., 2007, 5–37  mathnet  mathscinet  zmath; E. M. Bronshtein, “Approximation of Convex Sets by Polytopes”, Journal of Mathematical Sciences, 153:6 (2008), 727–762  crossref
    11. Н. Б. Брусникина, Г. К. Каменев, “О сложности и методах полиэдральной аппроксимации выпуклых тел с частично гладкой границей”, Ж. вычисл. матем. и матем. физ., 45:9 (2005), 1555–1565  mathnet  mathscinet  zmath; N. B. Brusnikina, G. K. Kamenev, “On the complexity and methods of polyhedral approximations of convex bodies with a partially smooth boundary”, Comput. Math. Math. Phys., 45:9 (2005), 1500–1510
    12. Efremov R.V., Kamenev G.K., Lotov A.V., “Constructing an economical description of a polytope using the duality theory of convex sets”, Doklady Mathematics, 70:3 (2004), 934–936  isi
    13. Г. К. Каменев, “Самодвойственные адаптивные алгоритмы полиэдральной аппроксимации выпуклых тел”, Ж. вычисл. матем. и матем. физ., 43:8 (2003), 1123–1137  mathnet  mathscinet  zmath; G. K. Kamenev, “Self-dual adaptive algorithms for polyhedral approximation of convex bodies”, Comput. Math. Math. Phys., 43:8 (2003), 1073–1086
    14. Л. В. Бурмистрова, “Экспериментальный анализ нового адаптивного метода полиэдральной аппроксимации многомерных выпуклых тел”, Ж. вычисл. матем. и матем. физ., 43:3 (2003), 328–346  mathnet  mathscinet  zmath; L. V. Burmistrova, “The experimental analysis of a new adaptive method for a polyhedral approximation of multidimensional convex bodies”, Comput. Math. Math. Phys., 43:3 (2003), 314–330
    15. Kamenev G.K., “A polyhedral approximation method for convex bodies that is optimal with respect to the order of the number of support and distance function evaluations”, Doklady Mathematics, 67:1 (2003), 137–139  isi
    16. Г. К. Каменев, “Сопряженные адаптивные алгоритмы полиэдральной аппроксимации выпуклых тел”, Ж. вычисл. матем. и матем. физ., 42:9 (2002), 1351–1367  mathnet  mathscinet  zmath; G. K. Kamenev, “Conjugate adaptive algorithms for polyhedral approximation of convex bodies”, Comput. Math. Math. Phys., 42:9 (2002), 1301–1316
    17. Р. В. Ефремов, Г. К. Каменев, “Априорная оценка асимптотической эффективности одного класса алгоритмов полиэдральной аппроксимации выпуклых тел”, Ж. вычисл. матем. и матем. физ., 42:1 (2002), 23–32  mathnet  mathscinet  zmath; R. V. Efremov, G. K. Kamenev, “A priori estimate for asymptotic efficiency of one class of algorithms for polyhedral approximation of convex bodies”, Comput. Math. Math. Phys., 42:1 (2002), 20–29
    18. Г. К. Каменев, “Аппроксимация вполне ограниченных множеств методом глубоких ям”, Ж. вычисл. матем. и матем. физ., 41:11 (2001), 1751–1760  mathnet  mathscinet  zmath; G. K. Kamenev, “Approximation of completely bounded sets by the deep holes method”, Comput. Math. Math. Phys., 41:11 (2001), 1667–1675  elib
    19. Л. В. Бурмистрова, “Исследование нового метода аппроксимации выпуклых компактных тел многогранниками”, Ж. вычисл. матем. и матем. физ., 40:10 (2000), 1475–1490  mathnet  mathscinet  zmath; L. V. Burmistrova, “Analysis of a new method for approximation of convex compact bodies by polyhedra”, Comput. Math. Math. Phys., 40:10 (2000), 1415–1429
    20. Г. К. Каменев, “Эффективные алгоритмы аппроксимации негладких выпуклых тел”, Ж. вычисл. матем. и матем. физ., 39:3 (1999), 446–450  mathnet  mathscinet  zmath; G. K. Kamenev, “Efficient algorithms for approximation of nonsmooth convex bodies”, Comput. Math. Math. Phys., 39:3 (1999), 423–427
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Статистика просмотров:
    Страница аннотации:300
    PDF полного текста:119
    Список литературы:53
    Первая страница:1
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2025