Аннотация:
Предлагается вариант построения гибридной схемы для решения нестационарного неоднородного уравнения переноса. Гибридизация проводится между двумя базовыми схемами: 1) схемой четвертого порядка аппроксимации по всем пространственным переменным и третьего по времени из семейства бикомпактных схем и 2) монотонной схемой первого порядка аппроксимации из семейства методов коротких характеристик с интерполяцией по освещенным граням. Показано, что выбранная схема первого порядка аппроксимации является схемой с наименьшей диссипацией, поэтому названа оптимальной. Зависимость решения гибридной схемы от решений базовых схем является локальной в каждом узле пространственно-временной сетки. Монотонизация строится непрерывным и однородным образом во всех ячейках, сохраняя четвертый порядок пространственной аппроксимации и третий порядок временной аппроксимации в областях гладкости решения, и высокую фактическую точность решения в области разрывов. Логическая простота и однородность алгоритма делают его хорошо приспособленным для использования при расчетах на суперкомпьютерах. Библ. 26. Фиг. 7. Табл. 1.
Образец цитирования:
Е. Н. Аристова, Б. В. Рогов, А. В. Чикиткин, “Оптимальная монотонизация высокоточной бикомпактной схемы для нестационарного многомерного уравнения переноса”, Ж. вычисл. матем. и матем. физ., 56:6 (2016), 973–988; Comput. Math. Math. Phys., 56:6 (2016), 962–976
Е. Н. Аристова, Н. И. Караваева, И. Р. Ивашкин, “Монотонизация модифицированной схемы с эрмитовой интерполяцией для численного решения неоднородного уравнения переноса с поглощением”, Препринты ИПМ им. М. В. Келдыша, 2024, 065, 40 с.
Е. Н. Аристова, Н. И. Караваева, “Реализация бикомпактной схемы для HOLO алгоритма решения задач переноса излучения в среде”, Препринты ИПМ им. М. В. Келдыша, 2024, 064, 27 с.
Н. И. Караваева, “Бикомпактные схемы для решения одногрупповой системы уравнений квазидиффузии совместно с уравнением энергии”, Препринты ИПМ им. М. В. Келдыша, 2023, 025, 16 с.
Е. Н. Аристова, Н. И. Караваева, “Бикомпактные схемы для HOLO-алгоритма решения уравнения переноса излучения совместно с уравнением энергии”, Компьютерные исследования и моделирование, 15:6 (2023), 1429–1448
Е. Н. Аристова, Г. О. Астафуров, “Проекционно-характеристический метод третьего порядка для решения уравнения переноса на неструктурированных сетках”, Матем. моделирование, 35:11 (2023), 79–93; E. N. Aristova, G. O. Astafurov, “A third-order projection-characteristic method for solving the transport equation on unstructed grids”, Math. Models Comput. Simul., 16:2 (2024), 208–216
Г. О. Астафуров, “Построение и исследование метода CPP (Cubic Polynomial Projection) решения уравнения переноса”, Препринты ИПМ им. М. В. Келдыша, 2022, 066, 56 с.
Е. Н. Аристова, Н. И. Караваева, “Бикомпактные схемы для численного решения модельной задачи нестационарного переноса нейтронов HOLO алгоритмами”, Матем. моделирование, 33:8 (2021), 3–26; E. N. Aristova, N. I. Karavaeva, “The bicompact schemes for numerical solving of Reed problem using HOLO algorithms”, Math. Models Comput. Simul., 14:2 (2022), 187–202
Elena N. Aristova, Smart Innovation, Systems and Technologies, 215, Smart Modelling for Engineering Systems, 2021, 51
Е. Н. Аристова, Г. О. Астафуров, “Сравнение диссипативно-дисперсионных свойств компактных разностных схем для численного решения уравнения адвекции”, Ж. вычисл. матем. и матем. физ., 61:11 (2021), 1747–1758; E. N. Aristova, G. O. Astafurov, “Comparison of dissipation and dispersion properties of compact difference schemes for the numerical solution of the advection equation”, Comput. Math. Math. Phys., 61:11 (2021), 1711–1722
Е. Н. Аристова, Г. О. Астафуров, “О сравнении диссипативно-дисперсионных свойств некоторых консервативных разностных схем”, Препринты ИПМ им. М. В. Келдыша, 2020, 117, 22 с.
Е. Н. Аристова, Н. И. Караваева, “Реализация бикомпактной схемы для HOLO алгоритмов решения уравнения переноса”, Препринты ИПМ им. М. В. Келдыша, 2019, 021, 28 с.
Е. Н. Аристова, Н. И. Караваева, “Постановка граничных условий в бикомпактных схемах для HOLO алгоритмов решения уравнения переноса”, Матем. моделирование, 31:9 (2019), 3–20; E. N. Aristova, N. I. Karavaeva, “The boundary conditions in the bicompact schemes for HOLO algorithms for solving the transport equation”, Math. Models Comput. Simul., 12:3 (2020), 271–281
Б. В. Рогов, А. В. Чикиткин, “О сходимости и точности метода итерируемой приближенной факторизации операторов многомерных высокоточных бикомпактных схем”, Матем. моделирование, 31:12 (2019), 119–144; B. V. Rogov, A. V. Chikitkin, “About the convergence and accuracy of the method of iterative approximate factorization of operators of multidimensional high-accuracy bicompact schemes”, Math. Models Comput. Simul., 12:5 (2020), 660–675
Е. Н. Аристова, Н. И. Караваева, “Бикомпактные схемы высокого порядка аппроксимации для уравнений квазидиффузии”, Препринты ИПМ им. М. В. Келдыша, 2018, 045, 28 с.
А. В. Чикиткин, Б. В. Рогов, “Два варианта параллельной реализации высокоточных бикомпактных схем для многомерного неоднородного уравнения переноса”, Препринты ИПМ им. М. В. Келдыша, 2018, 177, 24 с.