Аннотация:
Пусть $\sigma>0$, $m,r\in\mathbb N$, $m\geqslant r$, $\mathbf S_{\sigma,m}$ – пространство сплайнов порядка $m$ минимального дефекта с узлами $\frac{j\pi}\sigma$ ($j\in\mathbb Z$), $A_{\sigma,m}(f)_p$ – наилучшее приближение функций $f$ множеством $\mathbf S_{\sigma,m}$ в пространстве $L_p(\mathbb R)$. Известно, что при $p=1,+\infty$ \begin{equation}
\sup_{f\in W^{(r)}_p(\mathbb R)}\frac{A_{\sigma,m}(f)_p}{\|f^{(r)}\|_p}=\frac{\mathcal K_r}{\sigma^r}.\end{equation}
В настоящей работе строятся линейные операторы $\mathcal X_{\sigma,r,m}$ со значениями в $\mathbf S_{\sigma,m}$, такие что для всех $p\in[1,+\infty]$ и $f\in W_p^{(r)}(\mathbb R)$ $$
\|f-\mathcal X_{\sigma,r,m}(f)\|_p\leqslant\frac{\mathcal K_r}{\sigma^r}\|f^{(r)}\|_p.
$$
Тем самым устанавливается возможность реализации верхних граней в (1) линейными методами приближения, ранее остававшаяся неизвестной. Библ. – 21 назв.
Образец цитирования:
О. Л. Виноградов, А. В. Гладкая, “Непериодический сплайновый аналог операторов Ахиезера–Крейна–Фавара”, Аналитическая теория чисел и теория функций. 30, Зап. научн. сем. ПОМИ, 440, ПОМИ, СПб., 2015, 8–35; J. Math. Sci. (N. Y.), 217:1 (2016), 3–22
\RBibitem{VinGla15}
\by О.~Л.~Виноградов, А.~В.~Гладкая
\paper Непериодический сплайновый аналог операторов Ахиезера--Крейна--Фавара
\inbook Аналитическая теория чисел и теория функций.~30
\serial Зап. научн. сем. ПОМИ
\yr 2015
\vol 440
\pages 8--35
\publ ПОМИ
\publaddr СПб.
\mathnet{http://mi.mathnet.ru/znsl6210}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3504456}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2016
\vol 217
\issue 1
\pages 3--22
\crossref{https://doi.org/10.1007/s10958-016-2950-7}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84978173187}
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/znsl6210
https://www.mathnet.ru/rus/znsl/v440/p8
Эта публикация цитируется в следующих 5 статьяx:
О. Л. Виноградов, “Точные константы приближений классов сверток с семейством ядер с особенностью пространствами сдвигов”, Алгебра и анализ, 32:2 (2020), 45–84; O. L. Vinogradov, “Classes of convolutions with a singular family of kernels: Sharp constants for approximation by spaces of shifts”, St. Petersburg Math. J., 32:2 (2021), 233–260
О. Л. Виноградов, “Точные константы приближений классов сверток с суммируемым ядром пространствами сдвигов”, Алгебра и анализ, 30:5 (2018), 112–148; O. L. Vinogradov, “Sharp constants for approximations of convolution classes with an integrable kernel by spaces of shifts”, St. Petersburg Math. J., 30:5 (2019), 841–867
A. V. Gladkaya, O. L. Vinogradov, “Sharp Jackson type inequalities for spline approximation on the axis”, Anal. Math., 43:1 (2017), 27–47
О. Л. Виноградов, А. В. Гладкая, “Точные оценки линейных приближений непериодическими сплайнами через линейные комбинации модулей непрерывности”, Исследования по линейным операторам и теории функций. 45, Зап. научн. сем. ПОМИ, 456, ПОМИ, СПб., 2017, 55–76; O. L. Vinogradov, A. V. Gladkaya, “Sharp estimates of linear approximations by nonperiodic splines in terms of linear combinations of moduli of continuity”, J. Math. Sci. (N. Y.), 234:3 (2018), 303–317
О. Л. Виноградов, “Точные неравенства для приближений классов сверток на оси как предельный случай неравенств для периодических сверток”, Сиб. матем. журн., 58:2 (2017), 251–269; O. L. Vinogradov, “Sharp inequalities for approximations of convolution classes on the real line as the limit case of inequalities for periodic convolutions”, Siberian Math. J., 58:2 (2017), 190–204