Аннотация:
Исследован вопрос о существовании и асимптотической устойчивости стационарного решения начально-краевой задачи для уравнения реакция-диффузия-адвекция при условии, что реактивное и адвективное слагаемые сопоставимы по величине и претерпевают скачок вдоль некоторой гладкой кривой, расположенной внутри области рассмотрения. В окрестности этой кривой решение задачи обладает большим градиентом. Доказаны теоремы существования, локальной единственности и асимптотической устойчивости по Ляпунову таких решений. Для доказательства использован метод верхних и нижних решений. Для получения верхнего и нижнего решений применен асимптотический метод дифференциальных неравенств, суть которого заключается в построении их как модификаций асимптотических приближений по малому параметру решений этих задач. Асимптотическое приближение решения построено на основании модификации метода Васильевой.
Ключевые слова:
уравнение реакция-диффузия-адвекция, разрывные слагаемые, метод дифференциальных неравенств, верхнее и нижнее решения, внутренний переходный слой, малый параметр.
Образец цитирования:
Н. Т. Левашова, Н. Н. Нефедов, О. А. Николаева, “Решение с внутренним переходным слоем двумерной краевой задачи реакция-диффузия-адвекция с разрывными реактивным и адвективным слагаемыми”, ТМФ, 207:2 (2021), 293–309; Theoret. and Math. Phys., 207:2 (2021), 655–669
E. I. Nikulin, B. T. Volkov, D. A. Karmanov, “Periodic Inner Transition Layers in the Reaction–Diffusion Problem in the Case of Weak Reaction Discontinuity”, VMU, 80:№1, 2025 (2025)
E. I. Nikulin, V. T. Volkov, D. A. Karmanov, “Internal Transition Layer Structure
in the Reaction–Diffusion Problem for the Case
of a Balanced Reaction with a Weak Discontinuity”, Diff Equat, 60:1 (2024), 65
Е. И Никулин, В. Т Волков, Д. А Карманов, “STRUKTURA VNUTRENNEGO PEREKhODNOGO SLOYa V ZADAChE REAKTsIYa–DIFFUZIYa V SLUChAE SBALANSIROVANNOY REAKTsII SO SLABYM RAZRYVOM”, Differencialʹnye uravneniâ, 60:1 (2024), 64
N. N. Nefedov, E. I. Nikulin, A. O. Orlov, “Contrast structures in the reaction-diffusion-advection problem in the case of a weak reaction discontinuity”, Russ. J. Math. Phys., 29:1 (2022), 81
N. N. Nefedov, E. I. Nikulin, A. O. Orlov, “Existence of contrast structures in a problem with discontinuous reaction and advection”, Russ. J. Math. Phys., 29:2 (2022), 214
Н. Н. Нефедов, “Развитие методов асимптотического анализа переходных слоев в уравнениях реакции–диффузии–адвекции: теория и применение”, Ж. вычисл. матем. и матем. физ., 61:12 (2021), 2074–2094; N. N. Nefedov, “Development of methods of asymptotic analysis of transition layers in reaction–diffusion–advection equations: theory and applications”, Comput. Math. Math. Phys., 61:12 (2021), 2068–2087