Аннотация:
We obtain upper bounds on the number of solutions to congruences of the type $(x_1+s)\dots(x_\nu+s)\equiv(y_1+s)\dots(y_\nu +s)\not\equiv0\pmod p$ modulo a prime $p$ with variables from some short intervals. We give some applications of our results and in particular improve several recent estimates of J. Cilleruelo and M. Z. Garaev on exponential congruences and on cardinalities of products of short intervals, some double character sum estimates of J. Friedlander and H. Iwaniec and some results of M.-C. Chang and A. A. Karatsuba on character sums twisted with the divisor function.
Образец цитирования:
Jean Bourgain, Moubariz Z. Garaev, Sergei V. Konyagin, Igor E. Shparlinski, “On congruences with products of variables from short intervals and applications”, Ортогональные ряды, теория приближений и смежные вопросы, Сборник статей. К 60-летию со дня рождения академика Бориса Сергеевича Кашина, Труды МИАН, 280, МАИК «Наука/Интерпериодика», М., 2013, 67–96; Proc. Steklov Inst. Math., 280 (2013), 61–90
\RBibitem{BouGarKon13}
\by Jean~Bourgain, Moubariz~Z.~Garaev, Sergei~V.~Konyagin, Igor~E.~Shparlinski
\paper On congruences with products of variables from short intervals and applications
\inbook Ортогональные ряды, теория приближений и смежные вопросы
\bookinfo Сборник статей. К~60-летию со дня рождения академика Бориса Сергеевича Кашина
\serial Труды МИАН
\yr 2013
\vol 280
\pages 67--96
\publ МАИК «Наука/Интерпериодика»
\publaddr М.
\mathnet{http://mi.mathnet.ru/tm3445}
\crossref{https://doi.org/10.1134/S0371968513010056}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3241837}
\elib{https://elibrary.ru/item.asp?id=18893030}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2013
\vol 280
\pages 61--90
\crossref{https://doi.org/10.1134/S0081543813010057}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000320459700005}
\elib{https://elibrary.ru/item.asp?id=21878021}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84871571740}
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/tm3445
https://doi.org/10.1134/S0371968513010056
https://www.mathnet.ru/rus/tm/v280/p67
Эта публикация цитируется в следующих 33 статьяx:
Christian Bagshaw, Bryce Kerr, “Lattices in function fields and applications”, Mathematika, 71:2 (2025)
Bryce Kerr, Ilya D. Shkredov, Igor E. Shparlinski, Alexandru Zaharescu, “ENERGY BOUNDS FOR MODULAR ROOTS AND THEIR APPLICATIONS”, J. Inst. Math. Jussieu, 2024, 1
Moubariz Z. Garaev, Zeev Rudnick, Igor E. Shparlinski, “On a family of sparse exponential sums”, Mathematische Nachrichten, 2024
Kerr B., Mohammadi A., “Points on Polynomial Curves in Small Boxes Modulo An Integer”, J. Number Theory, 223 (2021), 64–78
Dunn A., Kerr B., Shparlinski I.E., Zaharescu A., “Bilinear Forms in Weyl Sums For Modular Square Roots and Applications”, Adv. Math., 375 (2020), 107369
Diaz C.A., Garaev M.Z., Hernandez J., “Product of Subsets of Small Intervals and Points on Exponential Curves Modulo a Prime”, Acta Arith., 193:3 (2020), 309–319
Shparlinski I.E., “On Sums of Kloosterman and Gauss Sums”, Trans. Am. Math. Soc., 371:12 (2019), 8679–8697
Petridis G., Shparlinski I.E., “Bounds of Trilinear and Quadrilinear Exponential Sums”, J. Anal. Math., 138:2 (2019), 613–641
S. Macourt, “Visible points on exponential curves”, Bull. Aust. Math. Soc., 97:3 (2018), 353–359
M. Z. Garaev, “On congruences involving products of variables from short intervals”, Q. J. Math., 69:3 (2018), 769–778
М. З. Гараев, “О распределении элементов подгрупп в арифметических прогрессиях по простому модулю”, Гармонический анализ, теория приближений и теория чисел, Сборник статей. К 60-летию со дня рождения академика Сергея Владимировича Конягина, Труды МИАН, 303, МАИК «Наука/Интерпериодика», М., 2018, 59–66; M. Z. Garaev, “On distribution of elements of subgroups in arithmetic progressions modulo a prime”, Proc. Steklov Inst. Math., 303 (2018), 50–57
И. Д. Шкредов, И. Е. Шпарлинский, “Двойные суммы характеров от интервалов и произвольных множеств”, Гармонический анализ, теория приближений и теория чисел, Сборник статей. К 60-летию со дня рождения академика Сергея Владимировича Конягина, Труды МИАН, 303, МАИК «Наука/Интерпериодика», М., 2018, 258–278; I. D. Shkredov, I. E. Shparlinski, “Double character sums with intervals and arbitrary sets”, Proc. Steklov Inst. Math., 303 (2018), 239–258
A. Ayyad, T. Cochrane, “The congruence $ax_1x_2\cdots x_k + bx_{k+1}x_{k+2}\cdots x_{2k} \equiv c \pmod p$”, Proc. Amer. Math. Soc., 145:2 (2017), 467–477
М. А. Королёв, “О работах Анатолия Алексеевича Карацубы, написанных им в 1990-е и 2000-е годы”, Аналитическая теория чисел, Сборник статей. К 80-летию со дня рождения Анатолия Алексеевича Карацубы, Труды МИАН, 299, МАИК «Наука/Интерпериодика», М., 2017, 7–49; M. A. Korolev, “On Anatolii Alekseevich Karatsuba's works written in the 1990s and 2000s”, Proc. Steklov Inst. Math., 299 (2017), 1–43
I. D. Shkredov, I. E. Shparlinski, “On some multiple character sums”, Mathematika, 63:2 (2017), 553–560
I. E. Shparlinski, K. H. Yau, “Double exponential sums with exponential functions”, Int. J. Number Theory, 13:10 (2017), 2531–2543
I. E. Shparlinski, “Systems of congruences with products of variables from short intervals”, Bull. Aust. Math. Soc., 93:3 (2016), 364–371
J. Cilleruelo, M. Z. Garaev, “Congruences involving product of intervals and sets with small multiplicative doubling modulo a prime and applications”, Math. Proc. Camb. Philos. Soc., 160:3 (2016), 477–494
D. Zhelezov, “Improved bounds for arithmetic progressions in product sets”, Int. J. Number Theory, 11:8 (2015), 2295–2303
X. Shao, “Character sums over unions of intervals”, Forum Math., 27:5 (2015), 3017–3026