Аннотация:
Приводятся две серии алгебр Ли с экстремальными свойствами. Каждая из алгебр первой серии порождает многообразие полиномиального роста, минимальное по отношению к степени полинома. Алгебры данной серии принадлежат так называемому многообразию Воличенко, которое имеет почти полиномиальный рост. Каждая из алгебр второй серии порождает многообразие полиномиального роста, минимальное по отношению к старшему коэффициенту полинома. Алгебры данной серии принадлежат многообразию почти полиномиального роста N2A.
Ключевые слова:
алгебра Ли, многообразие алгебр, рост многообразия.
С. М. Рацеев, О. И. Череватенко, “Числовые характеристики алгебр Лейбница–Пуассона”, Чебышевский сб., 18:1 (2017), 143–159
С. М. Рацеев, “Числовые характеристики многообразий алгебр Пуассона”, Фундамент. и прикл. матем., 21:2 (2016), 217–242; S. M. Ratseev, “Numerical characteristics of varieties of Poisson algebras”, J. Math. Sci., 237:2 (2019), 304–322