Аннотация:
New lower bounds involving sum, difference, product, and ratio sets of a set $A\subset {\mathbb C}$ are given. The estimates involving the sum set match, up to constants, the state-of-the-art estimates, proven by Solymosi for the reals and are obtained by generalizing his approach to the complex plane. The bounds involving the difference set improve the currently best known ones, also due to Solymosi, in both the real and complex cases by means of combining the Szemerédi–Trotter theorem with an arithmetic combinatorics technique.
This author's work was partially supported by the Russian Fund for Basic Research, grant 11-01-00329, and by the Program Supporting Leading Scientific Schools, grant Nsh-6003.2012.1.
Поступила в редакцию: 30.07.2012 Исправленный вариант: 06.03.2013
Matthew Hase-Liu, Adam Sheffer, “Sum–product phenomena for planar hypercomplex numbers”, European Journal of Combinatorics, 89 (2020), 103162
CHANGHAO CHEN, BRYCE KERR, ALI MOHAMMADI, “A NEW SUM–PRODUCT ESTIMATE IN PRIME FIELDS”, Bull. Aust. Math. Soc., 100:2 (2019), 268
GEORGE SHAKAN, “On higher energy decompositions and the sum–product phenomenon”, Math. Proc. Camb. Phil. Soc., 167:3 (2019), 599
Brendan Murphy, Giorgis Petridis, Oliver Roche-Newton, Misha Rudnev, Ilya D. Shkredov, “New results on sum-product type growth over fields”, Mathematika, 65:3 (2019), 588–642
Abdul Basit, Ben Lund, “An Improved Sum-Product Bound for Quaternions”, SIAM J. Discrete Math., 33:2 (2019), 1044
А. Иосевич, О. Роше-Ньютон, М. Руднев, “О дискретных значениях билинейных форм”, Матем. сб., 209:10 (2018), 71–88; A. Iosevich, O. Roche-Newton, M. Rudnev, “On discrete values of bilinear forms”, Sb. Math., 209:10 (2018), 1482–1497
Misha Rudnev, “On the Number of Incidences Between Points and Planes in Three Dimensions”, Combinatorica, 38:1 (2018), 219
J. Solymosi, C. Wong, “An application of kissing number in sum-product estimates”, Acta Math. Hungar., 155:1 (2018), 47
Б. С. Кашин, Ю. В. Малыхин, В. Ю. Протасов, К. С. Рютин, И. Д. Шкредов, “Сергею Владимировичу Конягину — 60”, Труды МИАН, 303 (2018), 7–16; B. S. Kashin, Yu. V. Malykhin, V. Yu. Protasov, K. S. Ryutin, I. D. Shkredov, “Sergei Vladimirovich Konyagin turns 60”, Proc. Steklov Inst. Math., 303 (2018), 1–9
Thang Pham, Michael Tait, Craig Timmons, Le Anh Vinh, “A Szemerédi–Trotter type theorem, sum-product estimates in finite quasifields, and related results”, Journal of Combinatorial Theory, Series A, 147 (2017), 55
Oliver Roche-Newton, Misha Rudnev, Ilya D. Shkredov, “New sum-product type estimates over finite fields”, Adv. Math., 293 (2016), 589–605
Timothy G.F. Jones, “An improved incidence bound for fields of prime order”, European Journal of Combinatorics, 52 (2016), 136
Ilya D. Shkredov, “On a question of A. Balog”, Pacific J. Math., 280:1 (2016), 227–240
Andrew Granville, József Solymosi, The IMA Volumes in Mathematics and its Applications, 159, Recent Trends in Combinatorics, 2016, 419
Brendan Murphy, Oliver Roche-Newton, Ilya Shkredov, “Variations on the sum-product problem”, SIAM J. Discrete Math., 29:1 (2015), 514–540
И. Д. Шкредов, “О суммах множеств Семереди–Троттера”, Труды МИАН, 289 (2015), 318–327; I. D. Shkredov, “On sums of Szemerédi–Trotter sets”, Proc. Steklov Inst. Math., 289 (2015), 300–309
Antal Balog, Oliver Roche-Newton, “New Sum-Product Estimates for Real and Complex Numbers”, Discrete Comput Geom, 53:4 (2015), 825
Thomas F. Bloom, Timothy G. F. Jones, “A Sum–Product Theorem in Function Fields”, International Mathematics Research Notices, 2014:19 (2014), 5249