Успехи математических наук
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор
Правила для авторов
Загрузить рукопись
Историческая справка

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



УМН:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Успехи математических наук, 2006, том 61, выпуск 5(371), страницы 3–88
DOI: https://doi.org/10.4213/rm3389
(Mi rm3389)
 

Эта публикация цитируется в 14 научных статьях (всего в 16 статьях)

Структура дополнительных серий и особых представлений групп O(n,1)O(n,1) и U(n,1)U(n,1)

А. М. Вершикa, М. И. Граевb

a Санкт-Петербургское отделение Математического института им. В. А. Стеклова РАН
b Научно-исследовательский институт системных исследований РАН
Список литературы:
Аннотация: В статье дается обзор нескольких, в том числе и новых, моделей неприводимых представлений дополнительной серии и их пределов – особых представлений – для групп SU(n,1)SU(n,1) и SO(n,1)SO(n,1). Указанные группы, геометрический смысл которых общеизвестен, исчерпывают список простых групп Ли, у которых единичное представление не изолировано в пространстве неприводимых унитарных представлений (нет свойства Каждана) и, следовательно, существуют такие неприводимые унитарные представления этих групп – “особые”, – в которых первые когомологии группы с коэффициентами в таких представлениях – нетривиальны. По техническим причинам удобнее рассматривать группы O(n,1)O(n,1) и U(n,1)U(n,1). Большая часть статьи посвящена группе U(n,1)U(n,1).
Основной акцент делается на так называемые коммутативные модели особых и дополнительных представлений: в них максимальная унипотентная подгруппа представлена мультипликаторами – в случае O(n,1)O(n,1), и в виде канонической модели представлений Гейзенберга в случае U(n,1)U(n,1). Эти модели изучались ранее только для группы SL(2,R). Они особенно важны для реализации нелокальных представлений групп токов, что будет рассмотрено в другом месте.
Мы существенно используем свойство “плотности” изучаемых неприводимых представлений группы SO(n,1): их ограничения на максимальную параболическую подгруппу P являются неприводимыми эквивалентными представлениями. Обратно, чтобы продолжить неприводимое представление P до представления SO(n,1), нужно доопределить лишь одну инволюцию. Для группы U(n,1) положение сходно, но чуть более сложно.
Библиография: 54 названия.
Поступила в редакцию: 10.05.2006
Англоязычная версия:
Russian Mathematical Surveys, 2006, Volume 61, Issue 5, Pages 799–884
DOI: https://doi.org/10.1070/RM2006v061n05ABEH004356
Реферативные базы данных:
Тип публикации: Статья
УДК: 517.5
MSC: Primary 22E65, 22D10; Secondary 20G20
Образец цитирования: А. М. Вершик, М. И. Граев, “Структура дополнительных серий и особых представлений групп O(n,1) и U(n,1)”, УМН, 61:5(371) (2006), 3–88; Russian Math. Surveys, 61:5 (2006), 799–884
Цитирование в формате AMSBIB
\RBibitem{VerGra06}
\by А.~М.~Вершик, М.~И.~Граев
\paper Структура дополнительных серий и особых представлений групп $O(n,1)$ и~$U(n,1)$
\jour УМН
\yr 2006
\vol 61
\issue 5(371)
\pages 3--88
\mathnet{http://mi.mathnet.ru/rm3389}
\crossref{https://doi.org/10.4213/rm3389}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2328257}
\zmath{https://zbmath.org/?q=an:1148.22017}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2006RuMaS..61..799V}
\elib{https://elibrary.ru/item.asp?id=25787329}
\transl
\jour Russian Math. Surveys
\yr 2006
\vol 61
\issue 5
\pages 799--884
\crossref{https://doi.org/10.1070/RM2006v061n05ABEH004356}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000244992000001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33947193957}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/rm3389
  • https://doi.org/10.4213/rm3389
  • https://www.mathnet.ru/rus/rm/v61/i5/p3
  • Эта публикация цитируется в следующих 16 статьяx:
    1. João Barata, Christian Jäkel, Jens Mund, “The 𝒫(𝜑)₂ Model on de Sitter Space”, Memoirs of the AMS, 281:1389 (2023)  crossref
    2. Dimitri Kusnezov, Symmetries and Order: Algebraic Methods in Many Body Systems: A symposium in celebration of the career of Professor Francesco Iachello, 2150, Symmetries and Order: Algebraic Methods in Many Body Systems: A symposium in celebration of the career of Professor Francesco Iachello, 2019, 020015  crossref
    3. А. М. Вершик, М. И. Граев, “Неунитарные представления групп $U(p,q)$-токов при $q\geq p>1$”, Теория представлений, динамические системы, комбинаторные методы. XXVIII, Зап. научн. сем. ПОМИ, 462, ПОМИ, СПб., 2017, 5–38  mathnet; A. M. Vershik, M. I. Graev, “Nonunitary representations of the groups of $U(p,q)$-currents for $q\geq p>1$”, J. Math. Sci. (N. Y.), 232:2 (2018), 99–120  crossref
    4. Kobayashi T., Speh B., “Symmetry breaking for representations of rank one orthogonal groups”, Mem. Am. Math. Soc., 238:1126 (2015), 1+  crossref  mathscinet  isi
    5. В. М. Бухштабер, М. И. Гордин, И. А. Ибрагимов, В. А. Кайманович, А. А. Кириллов, А. А. Лодкин, С. П. Новиков, А. Ю. Окуньков, Г. И. Ольшанский, Ф. В. Петров, Я. Г. Синай, Л. Д. Фаддеев, С. В. Фомин, Н. В. Цилевич, Ю. В. Якубович, “Анатолий Моисеевич Вершик (к восьмидесятилетию со дня рождения)”, УМН, 69:1(415) (2014), 173–186  mathnet  crossref  mathscinet  zmath  adsnasa  elib; V. M. Buchstaber, M. I. Gordin, I. A. Ibragimov, V. A. Kaimanovich, A. A. Kirillov, A. A. Lodkin, S. P. Novikov, A. Yu. Okounkov, G. I. Olshanski, F. V. Petrov, Ya. G. Sinai, L. D. Faddeev, S. V. Fomin, N. V. Tsilevich, Yu. V. Yakubovich, “Anatolii Moiseevich Vershik (on his 80th birthday)”, Russian Math. Surveys, 69:1 (2014), 165–179  crossref  isi
    6. А. М. Вершик, М. И. Граев, “Когомологии в неунитарных представлениях полупростых групп Ли (группа $U(2,2)$)”, Функц. анализ и его прил., 48:3 (2014), 1–13  mathnet  crossref  mathscinet  zmath  elib; A. M. Vershik, M. I. Graev, “Cohomology in Nonunitary Representations of Semisimple Lie Groups (the Group $U(2,2)$)”, Funct. Anal. Appl., 48:3 (2014), 155–165  crossref  isi  elib
    7. Hilgert J., Kobayashi T., Mollers J., “Minimal Representations Via Bessel Operators”, J. Math. Soc. Jpn., 66:2 (2014), 349–414  crossref  mathscinet  zmath  isi  scopus
    8. A. M. Vershik, M. I. Graev, “Special representations of nilpotent Lie groups and the associated Poisson representations of current groups”, Mosc. Math. J., 13:2 (2013), 345–360  mathnet  crossref  mathscinet
    9. А. М. Вершик, М. И. Граев, “Особые представления групп $U(\infty,1)$ и $O(\infty,1)$ и связанные с ними представления групп токов $U(\infty,1)^X$ и $O(\infty,1)^X$ в квазипуассоновом пространстве”, Функц. анализ и его прил., 46:1 (2012), 1–12  mathnet  crossref  mathscinet  zmath  elib
    10. Speh B., Venkataramana T.N., “Discrete components of some complementary series”, Forum Math., 23:6 (2011), 1159–1187  crossref  mathscinet  zmath  isi  elib  scopus
    11. А. М. Вершик, М. И. Граев, “Пуассонова модель фоковского пространства и представления групп токов”, Алгебра и анализ, 23:3 (2011), 63–136  mathnet  mathscinet  zmath  elib; A. M. Vershik, M. I. Graev, “Poisson model of the Fock space and representations of current groups”, St. Petersburg Math. J., 23:3 (2012), 459–510  crossref  isi  elib
    12. А. М. Вершик, М. И. Граев, “Интегральные модели представлений групп токов простых групп Ли”, УМН, 64:2(386) (2009), 5–72  mathnet  crossref  mathscinet  zmath  adsnasa  elib; A. M. Vershik, M. I. Graev, “Integral models of representations of the current groups of simple Lie groups”, Russian Math. Surveys, 64:2 (2009), 205–271  crossref  isi  elib
    13. А. М. Вершик, М. И. Граев, “Интегральные модели представлений групп токов”, Функц. анализ и его прил., 42:1 (2008), 22–32  mathnet  crossref  mathscinet  zmath  elib; A. M. Vershik, M. I. Graev, “Integral Models of Representations of Current Groups”, Funct. Anal. Appl., 42:1 (2008), 19–27  crossref  isi  elib
    14. А. М. Вершик, М. И. Граев, “Интегральные модели унитарных представлений групп токов со значениями в полупрямых произведениях”, Функц. анализ и его прил., 42:4 (2008), 37–49  mathnet  crossref  mathscinet  zmath  elib; A. M. Vershik, M. I. Graev, “Integral Models of Unitary Representations of Current Groups with Values in Semidirect Products”, Funct. Anal. Appl., 42:4 (2008), 279–289  crossref  isi  elib
    15. А. М. Вершик, И. М. Гельфанд, С. Г. Гиндикин, А. А. Кириллов, Г. Л. Литвинов, В. Ф. Молчанов, Ю. А. Неретин, В. С. Ретах, “Марк Иосифович Граев (к 85-летию со дня рождения)”, УМН, 63:1(379) (2008), 169–182  mathnet  crossref  mathscinet  zmath  adsnasa  elib; A. M. Vershik, I. M. Gel'fand, S. G. Gindikin, A. A. Kirillov, G. L. Litvinov, V. F. Molchanov, Yu. A. Neretin, V. S. Retakh, “Mark Iosifovich Graev (to his 85th brithday)”, Russian Math. Surveys, 63:1 (2008), 173–188  crossref  isi
    16. А. М. Вершик, “О Ф. А. Березине и его работе по представлению групп токов”, Теория представлений, динамические системы, комбинаторные и алгоритмические методы. XIV, Зап. научн. сем. ПОМИ, 331, ПОМИ, СПб., 2006, 5–14  mathnet  mathscinet  zmath; A. M. Vershik, “On F. A. Berezin and his work on representations of current groups”, J. Math. Sci. (N. Y.), 141:4 (2007), 1385–1389  crossref  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Статистика просмотров:
    Страница аннотации:1043
    PDF русской версии:321
    PDF английской версии:61
    Список литературы:127
    Первая страница:9
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2025