Nikolay Kuznetsov, Volker Reitmann, Emergence, Complexity and Computation, 38, Attractor Dimension Estimates for Dynamical Systems: Theory and Computation, 2021, 3
Xiao Liang, Xianglai Zhuo, Ruili Wang, “Global Attractor of Reaction–Diffusion Gene Regulatory Networks with S-Type Delay”, Neural Process Lett, 51:2 (2020), 1557
Soltanov K.N. Prykarpatski A.K. Blackmore D., “Long-Time Behavior of Solutions and Chaos in Reaction-Diffusion Equations”, Chaos Solitons Fractals, 99 (2017), 91–100
G. A. Leonov, N. V. Kuznetsov, T. N. Mokaev, “Homoclinic orbits, and self-excited and hidden attractors in a Lorenz-like system describing convective fluid motion”, Eur. Phys. J. Spec. Top, 224:8 (2015), 1421
Леонов Г.А., “Функции ляпунова в теории размерности аттракторов”, Прикладная математика и механика, 76:2 (2012), 180–196
Mikhail Z. Zgurovsky, Pavlo O. Kasyanov, Oleksiy V. Kapustyan, José Valero, Nina V. Zadoianchuk, Advances in Mechanics and Mathematics, 27, Evolution Inclusions and Variation Inequalities for Earth Data Processing III, 2012, 3
Mikhail Z. Zgurovsky, Pavlo O. Kasyanov, Oleksiy V. Kapustyan, José Valero, Nina V. Zadoianchuk, Advances in Mechanics and Mathematics, 27, Evolution Inclusions and Variation Inequalities for Earth Data Processing III, 2012, 37
Pavlo O. Kasyanov, Luisa Toscano, Nina V. Zadoianchuk, Muhammad Aslam Noor, “Long‐Time Behaviour of Solutions for Autonomous Evolution Hemivariational Inequality with Multidimensional “Reaction‐Displacement” Law”, Abstract and Applied Analysis, 2012:1 (2012)
М. И. Вишик, В. В. Чепыжов, “Траекторные аттракторы уравнений математической физики”, УМН, 66:4(400) (2011), 3–102; M. I. Vishik, V. V. Chepyzhov, “Trajectory attractors of equations of mathematical physics”, Russian Math. Surveys, 66:4 (2011), 637–731
Vladimir Chepyzhov, Mark Vishik, International Mathematical Series, 6, Instability in Models Connected with Fluid Flows I, 2008, 135
F. González-Gascón, D. Peralta-Salas, “Attractors and symmetries of vector fields: The inverse problem”, Journal of Mathematical Analysis and Applications, 335:2 (2007), 789
Gennady A. Leonov, “STRANGE ATTRACTORS AND CLASSICAL STABILITY THEORY”, IFAC Proceedings Volumes, 39:8 (2006), 251
A.V. Babin, Handbook of Dynamical Systems, 1, 2006, 983
L. Pankratov, I. Chueshov, 10th International Conference on Mathematical Methods in Electromagnetic Theory, 2004., 2004, 41
Alexander V. Rezounenko, “Inertial manifolds for retarded second order in time evolution equations”, Nonlinear Analysis: Theory, Methods & Applications, 51:6 (2002), 1045
Alexander Rezounenko, “A sufficient condition for the existence of approximate inertial manifolds containing the global attractor”, Comptes Rendus Mathematique, 334:11 (2002), 1015
А. В. Романов, “Конечномерная предельная динамика диссипативных параболических уравнений”, Матем. сб., 191:3 (2000), 99–112; A. V. Romanov, “Finite-dimensional limiting dynamics for dissipative parabolic equations”, Sb. Math., 191:3 (2000), 415–429
А. В. Романов, “Три контрпримера в теории инерциальных многообразий”, Матем. заметки, 68:3 (2000), 439–447; A. V. Romanov, “Three counterexamples in the theory of inertial manifolds”, Math. Notes, 68:3 (2000), 378–385
И. Д. Чуешов, “Аналитичность глобальных аттракторов
и определяющие узлы для некоторого класса нелинейных
волновых уравнений с демпфированием”, Матем. сб., 191:10 (2000), 119–136; I. D. Chueshov, “Analyticity of global attractors and determining nodes for a class of damped non-linear wave equations”, Sb. Math., 191:10 (2000), 1541–1559
Л. С. Панкратов, И. Д. Чуешов, “Усреднение аттракторов нелинейных гиперболических
уравнений с асимптотически вырождающимися коэффициентами”, Матем. сб., 190:9 (1999), 99–126; L. S. Pankratov, I. D. Chueshov, “Homogenization of attractors of non-linear hyperbolic equations with asymptotically degenerate coefficients”, Sb. Math., 190:9 (1999), 1325–1352