Regular and Chaotic Dynamics
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Regul. Chaotic Dyn.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Regular and Chaotic Dynamics, 2016, том 21, выпуск 4, страницы 390–409
DOI: https://doi.org/10.1134/S156035471604002X
(Mi rcd85)
 

Эта публикация цитируется в 15 научных статьях (всего в 15 статьях)

Realizing Nonholonomic Dynamics as Limit of Friction Forces

Jaap Eldering

Universidade de São Paulo — ICMC, Avenida Trabalhador Sao-carlense 400, CEP 13566-590, Sao Carlos, SP, Brazil
Список литературы:
Аннотация: The classical question whether nonholonomic dynamics is realized as limit of friction forces was first posed by Carathéodory. It is known that, indeed, when friction forces are scaled to infinity, then nonholonomic dynamics is obtained as a singular limit.
Our results are twofold. First, we formulate the problem in a differential geometric context. Using modern geometric singular perturbation theory in our proof, we then obtain a sharp statement on the convergence of solutions on infinite time intervals. Secondly, we set up an explicit scheme to approximate systems with large friction by a perturbation of the nonholonomic dynamics. The theory is illustrated in detail by studying analytically and numerically the Chaplygin sleigh as an example. This approximation scheme offers a reduction in dimension and has potential use in applications.
Ключевые слова: nonholonomic dynamics, friction, constraint realization, singular perturbation theory, Lagrange mechanics.
Финансовая поддержка Номер гранта
Coordenaҫão de Aperfeiҫoamento de Pessoal de Nível Superior PVE11-2012
This research was supported by the Capes grant PVE11-2012.
Реферативные базы данных:
Тип публикации: Статья
Язык публикации: английский
Образец цитирования: Jaap Eldering, “Realizing Nonholonomic Dynamics as Limit of Friction Forces”, Regul. Chaotic Dyn., 21:4 (2016), 390–409
Цитирование в формате AMSBIB
\RBibitem{Eld16}
\by Jaap~Eldering
\paper Realizing Nonholonomic Dynamics as Limit of Friction Forces
\jour Regul. Chaotic Dyn.
\yr 2016
\vol 21
\issue 4
\pages 390--409
\mathnet{http://mi.mathnet.ru/rcd85}
\crossref{https://doi.org/10.1134/S156035471604002X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000380679700002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84980377955}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/rcd85
  • https://www.mathnet.ru/rus/rcd/v21/i4/p390
  • Эта публикация цитируется в следующих 15 статьяx:
    1. Alexander Koshelev, Eugene Kugushev, Tatiana Shahova, Springer Proceedings in Mathematics & Statistics, 453, Perspectives in Dynamical Systems I — Applications, 2024, 319  crossref
    2. А. А. Кошелев, Е. И. Кугушев, Т. В. Шахова, “О движении шара, находящегося между вращающимися плоскостями с вязким трением”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 2024, № 3, 70–76  mathnet  crossref  elib; A. A. Koshelev, E. I. Kugushev, T. V. Shahova, “On the motion of a ball between rotating planes with viscous friction”, Moscow University Mеchanics Bulletin, 79:3 (2024), 110–117  crossref
    3. Vaughn Gzenda, Robin Chhabra, “Affine connection approach to the realization of nonholonomic constraints by strong friction forces”, Nonlinear Dyn, 2024  crossref
    4. Benliang Wang, Donghua Shi, Zhonggui Yi, “Constraint Realization‐Based Hamel Field Integrator for Geometrically Exact Planar Euler–Bernoulli Beam Dynamics”, Numerical Meth Engineering, 2024  crossref
    5. E. V. Vetchanin, “The Motion of a Balanced Circular Cylinder in an Ideal Fluid Under the Action of External Periodic Force and Torque”, Rus. J. Nonlin. Dyn., 15:1 (2019), 41–57  mathnet  crossref  elib
    6. T. B. Ivanova, “The Rolling of a Homogeneous Ball with Slipping on a Horizontal Rotating Plane”, Rus. J. Nonlin. Dyn., 15:2 (2019), 171–178  mathnet  crossref  mathscinet  elib
    7. M. D. Kvalheim, B. Bittner, Sh. Revzen, “Gait modeling and optimization for the perturbed Stokes regime”, Nonlinear Dyn., 97:4 (2019), 2249–2270  crossref  zmath  isi  scopus
    8. Alexander Kobrin, Vladimir Sobolev, Trends in Mathematics, 11, Extended Abstracts Spring 2018, 2019, 1  crossref
    9. Alexey V. Borisov, Ivan S. Mamaev, Eugeny V. Vetchanin, “Dynamics of a Smooth Profile in a Medium with Friction in the Presence of Parametric Excitation”, Regul. Chaotic Dyn., 23:4 (2018), 480–502  mathnet  crossref  mathscinet
    10. Alexey V. Borisov, Sergey P. Kuznetsov, “Comparing Dynamics Initiated by an Attached Oscillating Particle for the Nonholonomic Model of a Chaplygin Sleigh and for a Model with Strong Transverse and Weak Longitudinal Viscous Friction Applied at a Fixed Point on the Body”, Regul. Chaotic Dyn., 23:7-8 (2018), 803–820  mathnet  crossref
    11. J. Eldering, M. Kvalheim, Sh. Revzen, “Global linearization and fiber bundle structure of invariant manifolds”, Nonlinearity, 31:9 (2018), 4202–4245  crossref  mathscinet  zmath  isi  scopus
    12. A Kobrin, V Sobolev, “Decomposition of nonholonomic mechanics models”, J. Phys.: Conf. Ser., 1096 (2018), 012054  crossref
    13. S. Koshkin, V. Jovanovic, “Realization of non-holonomic constraints and singular perturbation theory for plane dumbbells”, J. Eng. Math., 106:1 (2017), 123–141  crossref  mathscinet  zmath  isi  scopus
    14. A. Kobrin, V. Sobolev, “Integral manifolds of fast-slow systems in nonholonomic mechanics”, 3rd International Conference Information Technology and Nanotechnology (ITNT-2017), Procedia Engineering, 201, eds. V. Soifer, N. Kazanskiy, O. Korotkova, S. Sazhin, Elsevier Science BV, 2017, 556–560  crossref  isi  scopus
    15. Alexander P. Ivanov, “On Final Motions of a Chaplygin Ball on a Rough Plane”, Regul. Chaotic Dyn., 21:7-8 (2016), 804–810  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Статистика просмотров:
    Страница аннотации:290
    Список литературы:45
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2025