Аннотация:
This paper is concerned with the motion of the Chaplygin sleigh on the surface of a circular cylinder. In the case of inertial motion, the problem reduces to the study of the dynamical system on a (two-dimensional) torus and to the classification of singular points. Particular cases in which the system admits an invariant measure are found.
In the case of a balanced and dynamically symmetric Chaplygin sleigh moving in a gravitational field it is shown that on the average the system has no drift along the vertical.
Образец цитирования:
Ivan A. Bizyaev, Alexey V. Borisov, Ivan S. Mamaev, “Dynamics of the Chaplygin Sleigh on a Cylinder”, Regul. Chaotic Dyn., 21:1 (2016), 136–146
\RBibitem{BizBorMam16}
\by Ivan A. Bizyaev, Alexey V. Borisov, Ivan S. Mamaev
\paper Dynamics of the Chaplygin Sleigh on a Cylinder
\jour Regul. Chaotic Dyn.
\yr 2016
\vol 21
\issue 1
\pages 136--146
\mathnet{http://mi.mathnet.ru/rcd58}
\crossref{https://doi.org/10.1134/S1560354716010081}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3457080}
\zmath{https://zbmath.org/?q=an:1346.70006}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000373028300008}
\elib{https://elibrary.ru/item.asp?id=26952431}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84957548917}
Ali Ahmadi, Mahdi Gorji, Ahmad Peymaei, Kimia Khosravi Soofi, Ali Kamali, “Autonomous swimming on limit cycles with disturbance rejection capability for a fish-inspired robot”, Nonlinear Dyn, 2024
E. M. Artemova, A. A. Kilin, “A Nonholonomic Model and Complete Controllability
of a Three-Link Wheeled Snake Robot”, Rus. J. Nonlin. Dyn., 18:4 (2022), 681–707
Alexander Kilin, Yuriy Karavaev, Kirill Yefremov, Lecture Notes in Networks and Systems, 324, Robotics for Sustainable Future, 2022, 428
Elizaveta M. Artemova, Alexander A. Kilin, 2020 International Conference Nonlinearity, Information and Robotics (NIR), 2020, 1
Kirill S. Yefremov, Tatiana B. Ivanova, Alexander A. Kilin, Yury L. Karavaev, 2020 International Conference Nonlinearity, Information and Robotics (NIR), 2020, 1
I. A. Bizyaev, A. V. Borisov, V. V. Kozlov, I. S. Mamaev, “Fermi-like acceleration and power-law energy growth in nonholonomic systems”, Nonlinearity, 32:9 (2019), 3209–3233
B. Gajic, B. Jovanovic, “Nonholonomic connections, time reparametrizations, and integrability of the rolling ball over a sphere”, Nonlinearity, 32:5 (2019), 1675–1694
V. Fedonyuk, Ph. Tallapragada, “Sinusoidal control and limit cycle analysis of the dissipative Chaplygin sleigh”, Nonlinear Dyn., 93:2 (2018), 835–846
А. П. Иванов, “Об особых точках уравнений механики”, Докл. РАН, 479:5 (2018), 493–496; A. P. Ivanov, “On singular points of equations of mechanics”, Dokl. Math., 97:2 (2018), 167–169
А. В. Борисов, И. С. Мамаев, И. А. Бизяев, “Динамические системы с неинтегрируемыми связями: вакономная механика, субриманова геометрия и неголономная механика”, УМН, 72:5(437) (2017), 3–62; A. V. Borisov, I. S. Mamaev, I. A. Bizyaev, “Dynamical systems with non-integrable constraints, vakonomic mechanics, sub-Riemannian geometry, and non-holonomic mechanics”, Russian Math. Surveys, 72:5 (2017), 783–840
Ivan A. Bizyaev, Alexey V. Borisov, Ivan S. Mamaev, “The Chaplygin Sleigh with Parametric Excitation: Chaotic Dynamics and Nonholonomic Acceleration”, Regul. Chaotic Dyn., 22:8 (2017), 955–975
A. A. Oshemkov, P. E. Ryabov, S. V. Sokolov, “Explicit determination of certain periodic motions of a generalized two-field gyrostat”, Russ. J. Math. Phys., 24:4 (2017), 517–525
И. А. Бизяев, А. В. Борисов, И. С. Мамаев, “Система Гесса–Аппельрота и ее неголономные аналоги”, Современные проблемы математики, механики и математической физики. II, Сборник статей, Труды МИАН, 294, МАИК «Наука/Интерпериодика», М., 2016, 268–292; I. A. Bizyaev, A. V. Borisov, I. S. Mamaev, “The Hess–Appelrot system and its nonholonomic analogs”, Proc. Steklov Inst. Math., 294 (2016), 252–275