Regular and Chaotic Dynamics
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Regul. Chaotic Dyn.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Regular and Chaotic Dynamics, 2009, том 14, выпуск 1, страницы 18–41
DOI: https://doi.org/10.1134/S1560354709010043
(Mi rcd538)
 

Эта публикация цитируется в 25 научных статьях (всего в 25 статьях)

JÜRGEN MOSER – 80

Multiparticle Systems. The Algebra of Integrals and Integrable Cases

A. V. Borisov, A. A. Kilin, I. S. Mamaev

Institute of Computer Science, Udmurt State University, ul. Universitetskaya 1, Izhevsk, 426034 Russia
Аннотация: Systems of material points interacting both with one another and with an external field are considered in Euclidean space. For the case of arbitrary binary interaction depending solely on the mutual distance between the bodies, new integrals are found, which form a Galilean momentum vector. A corresponding algebra of integrals constituted by the integrals of momentum, angular momentum, and Galilean momentum is presented. Particle systems with a particle­interaction potential homogeneous of degree α=2 are considered. The most general form of the additional integral of motion, which we term the Jacobi integral, is presented for such systems. A new nonlinear algebra of integrals including the Jacobi integral is found. A systematic description is given to a new reduction procedure and possibilities of applying it to dynamics with the aim of lowering the order of Hamiltonian systems. Some new integrable and superintegrable systems generalizing the classical ones are also described. Certain generalizations of the Lagrangian identity for systems with a particle­ interaction potential homogeneous of degree α=2 are presented. In addition, computational experiments are used to prove the nonintegrability of the Jacobi problem on a plane.
Ключевые слова: multiparticle systems, Jacobi integral.
Поступила в редакцию: 11.08.2008
Принята в печать: 04.12.2008
Реферативные базы данных:
Тип публикации: Personalia
MSC: 70Hxx, 70G65
Язык публикации: английский
Образец цитирования: A. V. Borisov, A. A. Kilin, I. S. Mamaev, “Multiparticle Systems. The Algebra of Integrals and Integrable Cases”, Regul. Chaotic Dyn., 14:1 (2009), 18–41
Цитирование в формате AMSBIB
\RBibitem{BorKilMam09}
\by A. V. Borisov, A. A. Kilin, I. S. Mamaev
\paper Multiparticle Systems. The Algebra of Integrals and Integrable Cases
\jour Regul. Chaotic Dyn.
\yr 2009
\vol 14
\issue 1
\pages 18--41
\mathnet{http://mi.mathnet.ru/rcd538}
\crossref{https://doi.org/10.1134/S1560354709010043}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2480950}
\zmath{https://zbmath.org/?q=an:1229.37106}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/rcd538
  • https://www.mathnet.ru/rus/rcd/v14/i1/p18
  • Эта публикация цитируется в следующих 25 статьяx:
    1. Szuminski W., “On Certain Integrable and Superintegrable Weight-Homogeneous Hamiltonian Systems”, Commun. Nonlinear Sci. Numer. Simul., 67 (2019), 600–616  crossref  mathscinet  isi  scopus
    2. Jaume Llibre, Xiang Zhang, “On the integrability of the Hamiltonian systems with homogeneous polynomial potentials”, Applied Mathematics and Nonlinear Sciences, 3:2 (2018), 527  crossref
    3. Galliano Valent, “Superintegrable Models on Riemannian Surfaces of Revolution with Integrals of any Integer Degree (I)”, Regul. Chaotic Dyn., 22:4 (2017), 319–352  mathnet  crossref
    4. Alexey V. Borisov, Ivan S. Mamaev, Ivan A. Bizyaev, “The Spatial Problem of 2 Bodies on a Sphere. Reduction and Stochasticity”, Regul. Chaotic Dyn., 21:5 (2016), 556–580  mathnet  crossref  mathscinet  zmath  elib
    5. Maria V. Demina, Nikolai A. Kudryashov, “Multi-particle Dynamical Systems and Polynomials”, Regul. Chaotic Dyn., 21:3 (2016), 351–366  mathnet  crossref  mathscinet
    6. Andrzej J. Maciejewski, Maria Przybylska, “Integrability of Hamiltonian systems with algebraic potentials”, Physics Letters A, 380:1-2 (2016), 76  crossref
    7. Alain Albouy, “Projective Dynamics and First Integrals”, Regul. Chaotic Dyn., 20:3 (2015), 247–276  mathnet  crossref  mathscinet  zmath  adsnasa
    8. Andrey V. Tsiganov, “Simultaneous Separation for the Neumann and Chaplygin Systems”, Regul. Chaotic Dyn., 20:1 (2015), 74–93  mathnet  crossref  mathscinet  zmath
    9. Alain Albouy, Trends in Mathematics, 4, Extended Abstracts Spring 2014, 2015, 3  crossref
    10. Alain Albouy, “Projective dynamics and first integrals”, Regul. Chaot. Dyn., 20:3 (2015), 247  crossref
    11. А. В. Борисов, И. С. Мамаев, “Симметрии и редукция в неголономной механике”, Нелинейная динам., 11:4 (2015), 763–823  mathnet
    12. Alexey V. Borisov, Ivan S. Mamaev, “Symmetries and Reduction in Nonholonomic Mechanics”, Regul. Chaotic Dyn., 20:5 (2015), 553–604  mathnet  crossref  mathscinet  zmath
    13. Ivan A. Bizyaev, Alexey V. Borisov, Ivan S. Mamaev, “Superintegrable Generalizations of the Kepler and Hook Problems”, Regul. Chaotic Dyn., 19:3 (2014), 415–434  mathnet  crossref  mathscinet  zmath
    14. И. А. Бизяев, “Об одном обобщении систем типа Калоджеро”, Нелинейная динам., 10:2 (2014), 209–212  mathnet
    15. Valery V. Kozlov, “Remarks on Integrable Systems”, Regul. Chaotic Dyn., 19:2 (2014), 145–161  mathnet  crossref  isi  scopus
    16. G. Arutyunov, D. Medina-Rincon, “Deformed Neumann model from spinning strings on (AdS5×S5)η”, JHEP, 2014, no. 10, 50–0  mathnet  crossref  isi  scopus
    17. Claudia Chanu, Luca Degiovanni, Giovanni Rastelli, “First Integrals of Extended Hamiltonians in n+1 Dimensions Generated by Powers of an Operator”, SIGMA, 7 (2011), 038, 12 pp.  mathnet  crossref  mathscinet
    18. Jaume Llibre, Adam Mahdi, Claudia Valls, “Polynomial integrability of the Hamiltonian systems with homogeneous potential of degree -2”, Physics Letters A, 375:18 (2011), 1845  crossref
    19. Jaume Llibre, Adam Mahdi, Claudia Valls, “Polynomial integrability of the Hamiltonian systems with homogeneous potential of degree - 3”, Physica D: Nonlinear Phenomena, 240:24 (2011), 1928  crossref
    20. Claudia Chanu, Luca Degiovanni, Giovanni Rastelli, “Three and Four-body Systems in One Dimension: Integrability, Superintegrability and Discrete Symmetries”, Regul. Chaotic Dyn., 16:5 (2011), 496–503  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Статистика просмотров:
    Страница аннотации:146
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2025