Аннотация:
The Neumann and Chaplygin systems on the sphere are simultaneously separable in variables obtained from the standard elliptic coordinates by the proper Bäcklund transformation. We also prove that after similar Bäcklund transformations other curvilinear coordinates on the sphere and on the plane become variables of separation for the system with quartic potential, for the Hénon-Heiles system and for the Kowalevski top. This allows us to speak about some analog of the hetero Bäcklund transformations relating different Hamilton–Jacobi equations.
Ключевые слова:
bi-Hamiltonian geometry, Bäcklund transformations, separation of variables.
\RBibitem{Tsi15}
\by Andrey V. Tsiganov
\paper Simultaneous Separation for the Neumann and Chaplygin Systems
\jour Regul. Chaotic Dyn.
\yr 2015
\vol 20
\issue 1
\pages 74--93
\mathnet{http://mi.mathnet.ru/rcd62}
\crossref{https://doi.org/10.1134/S1560354715010062}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3304939}
\zmath{https://zbmath.org/?q=an:1325.37052}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000349024900006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84944180427}
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd62
https://www.mathnet.ru/rus/rcd/v20/i1/p74
Эта публикация цитируется в следующих 35 статьяx:
Xin-Yi Gao, Yong-Jiang Guo, Wen-Rui Shan, “On the Oceanic/Laky Shallow-Water Dynamics through a Boussinesq-Burgers System”, Qual. Theory Dyn. Syst., 23:2 (2024)
Xin-Yi Gao, Yong-Jiang Guo, Wen-Rui Shan, “Oceanic shallow-water symbolic computation on a (2+1)-dimensional generalized dispersive long-wave system”, Physics Letters A, 457 (2023), 128552
Xin-Yi Gao, “Considering the wave processes in oceanography, acoustics and hydrodynamics by means of an extended coupled (2+1)-dimensional Burgers system”, Chinese Journal of Physics, 86 (2023), 572
Andrey V. Tsiganov, “Equivalent Integrable Metrics on the Sphere with Quartic Invariants”, SIGMA, 18 (2022), 094, 19 pp.
A V Tsiganov, “Reducible Abelian varieties and Lax matrices for Euler's problem of two fixed centres”, Nonlinearity, 35:10 (2022), 5357
Gao X.-Y., Guo Y.-J., Shan W.-R., “Symbolic Computation on a (2+1)-Dimensional Generalized Variable-Coefficient Boiti-Leon-Pempinelli System For the Water Waves”, Chaos Solitons Fractals, 150 (2021), 111066
Gao X.-Y., Guo Y.-J., Shan W.-R., “In Oceanography, Acoustics and Hydrodynamics: An Extended Coupled (2+1) -Dimensional Burgers System”, Chin. J. Phys., 70 (2021), 264–270
Gao X.-Y., Guo Y.-J., Shan W.-R., “Oceanic Studies Via a Variable-Coefficient Nonlinear Dispersive-Wave System in the Solar System”, Chaos Solitons Fractals, 142 (2021), 110367
Gao X.-Y., Guo Y.-J., Shan W.-R., “Scaling Transformations, Hetero-Backlund Transformations and Similarity Reductions on a (2+1)-Dimensional Generalized Variable-Coefficient Boiti-Leon-Pempinelli System For Water Waves”, Rom. Rep. Phys., 73:2 (2021), 111
Zhou T.-Yu., Tian B., Chen S.-S., Wei Ch.-Ch., Chen Yu.-Q., “Backlund Transformations, Lax Pair and Solutions of a Sharma-Tasso-Olver-Burgers Equation For the Nonlinear Dispersive Waves”, Mod. Phys. Lett. B, 35:35 (2021), 2150421
X.-Y. Gao, Y.-J. Guo, W.-R. Shan, “Scaling and hetero-/auto-Backlund transformations with solitons of an extended coupled (2+1)-dimensional Burgers system for the wave processes in hydrodynamics and acoustics”, Mod. Phys. Lett. B, 34:34 (2020), 2050389
X.-Y. Gao, Y.-J. Guo, W.-R. Shan, “Hetero-Backlund transformation and similarity reduction of an extended (2+1)-dimensional coupled Burgers system in fluid mechanics”, Phys. Lett. A, 384:31 (2020), 126788
A. V. Tsiganov, “Reduction of divisors for classical superintegrable gl(3) magnetic chain”, J. Math. Phys., 61:11 (2020), 112703
A. V. Tsiganov, “Discretization and superintegrability all rolled into one”, Nonlinearity, 33:9 (2020), 4924–4939
A. V. Tsiganov, “Backlund transformations and divisor doubling”, J. Geom. Phys., 126:SI (2018), 148–158
A. V. Tsiganov, “Duffing Oscillator and Elliptic Curve Cryptography”, Nelin. Dinam., 14:2 (2018), 235–241
А. В. Цыганов, “О дискретизации гамильтоновых систем и теории пересечений”, ТМФ, 197:3 (2018), 475–492; A. V. Tsiganov, “Discretization of Hamiltonian systems and intersection theory”, Theoret. and Math. Phys., 197:3 (2018), 1806–1822
Andrey V. Tsiganov, “On Discretization of the Euler Top”, Regul. Chaotic Dyn., 23:6 (2018), 785–796
A. V. Tsiganov, “On exact discretization of cubic-quintic Duffing oscillator”, J. Math. Phys., 59:7 (2018), 072703
A. V. Tsiganov, Springer Proceedings in Mathematics & Statistics, 273, Recent Developments in Integrable Systems and Related Topics of Mathematical Physics, 2018, 47