Аннотация:
We study SU(3)-invariant integrable models solvable by a nested algebraic Bethe ansatz. We obtain determinant representations for form factors of diagonal entries of the monodromy matrix. This representation can be used for the calculation of form factors and correlation functions of the XXXSU(3)-invariant Heisenberg chain.
The work of SP was supported in part by RFBR grant 11-01-00980-a, grant of Scientific Foundation of NRU HSE 12-09-0064 and grant of FASI RF 14.740.11.0347. ER was supported by ANR Project DIADEMS (Programme Blanc ANR SIMI1 2010-BLAN-012002). NAS was supported by the Program of RAS Basic Problems of Nonlinear Dynamics, RFBR-11-01-00440, RFBR-11-01-12037-ofi-m, SS-4612.2012.1.
Поступила в редакцию: 23.07.2012 Принята в печать: 20.09.2012
Реферативные базы данных:
Тип публикации:
Статья
Язык публикации: английский
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/jsm7
Эта публикация цитируется в следующих 30 статьяx:
N. A. Slavnov, “Algebraic Bethe ansatz approach to the correlation functions of the one-dimensional bosons with attraction”, JHEP, 2024 (2024), 61
Hao Pei, Véronique Terras, “On scalar products and form factors by separation of variables: the antiperiodic XXZ model”, J. Phys. A: Math. Theor., 55:1 (2022), 015205
Giuliano Niccoli, Hao Pei, Véronique Terras, “Correlation functions by separation of variables: the XXX spin chain”, SciPost Phys., 10:1 (2021)
Nikolay Gromov, Fedor Levkovich-Maslyuk, Paul Ryan, “Determinant form of correlators in high rank integrable spin chains via separation of variables”, J. High Energ. Phys., 2021:5 (2021)
Н. А. Славнов, “Производящая функция для скалярных произведений в алгебраическом анзаце Бете”, ТМФ, 204:3 (2020), 453–465; N. A. Slavnov, “Generating function for scalar products in the algebraic Bethe ansatz”, Theoret. and Math. Phys., 204:3 (2020), 1216–1226
Moritz Binder, Thomas Barthel, “Low-energy physics of isotropic spin-1 chains in the critical and Haldane phases”, Phys. Rev. B, 102:1 (2020)
Jean Michel Maillet, Giuliano Niccoli, Louis Vignoli, “On scalar products in higher rank quantum separation of variables”, SciPost Phys., 9:6 (2020)
N. A. Slavnov, “Introduction to the nested algebraic Bethe ansatz”, SciPost Phys. Lect. Notes, 19 (2020), 1–53
Jean Michel Maillet, Giuliano Niccoli, Louis Vignoli, “Separation of variables bases for integrable $gl_{\mathcal{M}|\mathcal{N}}$ and Hubbard models”, SciPost Phys., 9:4 (2020)
Jean Michel Maillet, Giuliano Niccoli, “Complete spectrum of quantum integrable lattice models associated to Y(gl(n)) by separation of variables”, SciPost Phys., 6:6 (2019)
S. Belliard, N. A. Slavnov, “Why scalar products in the algebraic Bethe ansatz have determinant representation”, JHEP, 2019:10 (2019), 103–17
Arthur Hutsalyuk, Andrii Liashyk, Stanislav Z. Pakuliak, Eric Ragoucy, Nikita A. Slavnov, “Scalar products and norm of Bethe vectors for integrable models based on $U_q(\widehat{\mathfrak{gl}}_n)$”, SciPost Phys., 4 (2018), 6–30
Stanislav Pakuliak, Eric Ragoucy, Nikita Slavnov, “Nested Algebraic Bethe Ansatz in integrable models: recent results”, SciPost Phys. Lect. Notes, 2018
Н. А. Славнов, “Детерминантные представления для скалярных произведений в алгебраическом анзаце Бете”, ТМФ, 197:3 (2018), 435–443; N. A. Slavnov, “Determinant representations for scalar products in the algebraic Bethe ansatz”, Theoret. and Math. Phys., 197:3 (2018), 1771–1778
Nikolay Gromov, Fedor Levkovich-Maslyuk, “New compact construction of eigenstates for supersymmetric spin chains”, J. High Energ. Phys., 2018:9 (2018)
Nikolay Gromov, Fedor Levkovich-Maslyuk, Grigory Sizov, “New construction of eigenstates and separation of variables for SU(N) quantum spin chains”, J. High Energ. Phys., 2017:9 (2017)
A. Hustalyuk, A. Liashyk, S. Pakulyak, E. Ragoucy, N. Slavnov, “Scalar products of Bethe vectors in models with $\mathfrak{gl}(2|1)$ symmetry. 1. Super-analog of Reshetikhin formula”, J. Phys. A, 49:45 (2016), 454005–28
Gilberto Santos, Changrim Ahn, Angela Foerster, Itzhak Roditi, “Bethe states for the two-site Bose–Hubbard model: A binomial approach”, Physics Letters B, 746 (2015), 186
Ovidiu I. Pâţu, Andreas Klümper, “Thermodynamics, density profiles, and correlation functions of the inhomogeneous one-dimensional spinor Bose gas”, Phys. Rev. A, 92:4 (2015)
S. Pakuliak, E. Ragoucy, N. A. Slavnov, “Zero modes method and form factors in quantum integrable models”, Nuclear Phys. B, 893 (2015), 459–481