The work was supported by an RFBR grant 15-31-20484 mol_a_ved and by the joint project
15-51-52031 HHCa. The work of A Levin was partially supported by the Department of
Mathematics NRU HSE, the subsidy granted to the HSE by the Government of the Russian
Federation for the implementation of the Global Competitiveness Program, and by the
Simons Foundation.
Поступила в редакцию: 02.04.2016 Исправленный вариант: 28.05.2016 Принята в печать: 14.06.2016
К. Р. Аталиков, А. В. Зотов, “Калибровочная эквивалентность между $(1+1)$-мерными теориями поля Калоджеро–Мозера–Сазерленда и тригонометрическим уравнением Ландау–Лифшица старшего ранга”, ТМФ, 219:3 (2024), 545–561; K. R. Atalikov, A. V. Zotov, “Gauge equivalence of $1+1$ Calogero–Moser–Sutherland field
theory and a higher-rank trigonometric Landau–Lifshitz model”, Theoret. and Math. Phys., 219:3 (2024), 1004–1017
К. Р. Аталиков, А. В. Зотов, “Обобщение старшего ранга 11-вершинной рациональной $R$-матрицы: соотношения IRF-Vertex и ассоциативное уравнение Янга–Бакстера”, ТМФ, 216:2 (2023), 203–225; K. R. Atalikov, A. V. Zotov, “Higher-rank generalization of the 11-vertex rational $R$-matrix: IRF–vertex relations and the associative Yang–Baxter equation”, Theoret. and Math. Phys., 216:2 (2023), 1083–1103
K. Atalikov, A. Zotov, “Gauge equivalence between 1 + 1 rational Calogero–Moser field theory and higher rank Landau–Lifshitz equation”, Письма в ЖЭТФ, 117:8 (2023), 632–633; K. Atalikov, A. Zotov, “Gauge equivalence between 1 + 1 rational Calogero–Moser field theory and higher rank Landau–Lifshitz equation”, JETP Letters, 117:8 (2023), 630–634
K. Atalikov, A. Zotov, “Higher rank $1+1$ integrable Landau–Lifshitz field theories from associative Yang–Baxter equation”, Письма в ЖЭТФ, 115:12 (2022), 809–810; K. Atalikov, A. Zotov, “Higher rank 1 + 1 integrable landauвђ“lifshitz field theories from the associative yangвђ“baxter equation”, JETP Letters, 115:12 (2022), 757–762
E. Trunina, A. Zotov, “Lax equations for relativistic $\mathrm{G}\mathrm{L}(NM,\mathbb{C})$ Gaudin models on elliptic curve”, J. Phys. A, 55:39 (2022), 395202–31
Е. С. Трунина, А. В. Зотов, “Многополюсное обобщение для эллиптических моделей интегрируемых взаимодействующих волчков”, ТМФ, 209:1 (2021), 16–45; E. S. Trunina, A. V. Zotov, “Multi-pole extension of the elliptic models of interacting integrable tops”, Theoret. and Math. Phys., 209:1 (2021), 1331–1356
А. В. Зотов, “Релятивистские взаимодействующие интегрируемые эллиптические волчки”, ТМФ, 201:2 (2019), 175–192; A. V. Zotov, “Relativistic interacting integrable elliptic tops”, Theoret. and Math. Phys., 201:2 (2019), 1565–1580
M. Vasilyev, A. Zotov, “On factorized Lax pairs for classical many-body integrable systems”, Rev. Math. Phys., 31:6 (2019), 1930002–45
T. Krasnov, A. Zotov, “Trigonometric Integrable Tops from Solutions of Associative Yang–Baxter Equation”, Ann. Henri Poincaré, 20:8 (2019), 2671–2697
A. Grekov, I. Sechin, A. Zotov, “Generalized model of interacting integrable tops”, JHEP, 2019:10 (2019), 81–33
А. В. Зотов, “Модель Калоджеро–Мозера и $R$-матричные тождества”, ТМФ, 197:3 (2018), 417–434; A. V. Zotov, “Calogero–Moser model and $R$-matrix identities”, Theoret. and Math. Phys., 197:3 (2018), 1755–1770
A. Zotov, “Relativistic elliptic matrix tops and finite Fourier transformations”, Modern Phys. Lett. A, 32:32 (2017), 1750169–22