Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2021, Volume 209, Number 1, Pages 16–45
DOI: https://doi.org/10.4213/tmf10114
(Mi tmf10114)
 

This article is cited in 6 scientific papers (total in 6 papers)

Multi-pole extension of the elliptic models of interacting integrable tops

E. S. Truninaab, A. V. Zotova

a Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia
b Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow region, Russia
Full-text PDF (739 kB) Citations (6)
References:
Abstract: We review and give a detailed description of the glNMglNM Gaudin models related to holomorphic vector bundles of rank NMNM and degree NN over an elliptic curve with nn punctures. We introduce their generalizations constructed by means of RR-matrices satisfying the associative Yang–Baxter equation. A natural extension of the obtained models to the Schlesinger systems is also given.
Keywords: elliptic integrable system, elliptic Schlesinger system, Gaudin model.
Funding agency Grant number
Russian Science Foundation 19-11-00062
This work is supported by the Russian Science Foundation under grant 19-11-00062 and performed in Steklov Mathematical Institute of Russian Academy of Sciences.
Received: 19.04.2021
Revised: 20.05.2021
English version:
Theoretical and Mathematical Physics, 2021, Volume 209, Issue 1, Pages 1331–1356
DOI: https://doi.org/10.1134/S0040577921100020
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: E. S. Trunina, A. V. Zotov, “Multi-pole extension of the elliptic models of interacting integrable tops”, TMF, 209:1 (2021), 16–45; Theoret. and Math. Phys., 209:1 (2021), 1331–1356
Citation in format AMSBIB
\Bibitem{TruZot21}
\by E.~S.~Trunina, A.~V.~Zotov
\paper Multi-pole extension of the~elliptic models of interacting integrable tops
\jour TMF
\yr 2021
\vol 209
\issue 1
\pages 16--45
\mathnet{http://mi.mathnet.ru/tmf10114}
\crossref{https://doi.org/10.4213/tmf10114}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4324111}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2021TMP...209.1331T}
\elib{https://elibrary.ru/item.asp?id=47516304}
\transl
\jour Theoret. and Math. Phys.
\yr 2021
\vol 209
\issue 1
\pages 1331--1356
\crossref{https://doi.org/10.1134/S0040577921100020}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000708924700002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85117602872}
Linking options:
  • https://www.mathnet.ru/eng/tmf10114
  • https://doi.org/10.4213/tmf10114
  • https://www.mathnet.ru/eng/tmf/v209/i1/p16
  • This publication is cited in the following 6 articles:
    1. Maxime Fairon, “Integrable systems on multiplicative quiver varieties from cyclic quivers”, J. Phys. A: Math. Theor., 58:4 (2025), 045202  crossref
    2. M. Matushko, A. Zotov, “Supersymmetric generalization of qq-deformed long-range spin chains of Haldane–Shastry type and trigonometric GL(N|M)GL(N|M) solution of associative Yang–Baxter equation”, Nuclear Phys. B, 1001 (2024), 116499–14  mathnet  crossref  mathscinet
    3. K. R. Atalikov, A. V. Zotov, “Higher-rank generalization of the 11-vertex rational RR-matrix: IRF–vertex relations and the associative Yang–Baxter equation”, Theoret. and Math. Phys., 216:2 (2023), 1083–1103  mathnet  crossref  crossref  mathscinet  adsnasa
    4. M. G. Matushko, A. V. Zotov, “On the RR-matrix identities related to elliptic anisotropic spin Ruijsenaars–Macdonald operators”, Theoret. and Math. Phys., 213:2 (2022), 1543–1559  mathnet  crossref  crossref  mathscinet  adsnasa
    5. A. V. Zotov, E. S. Trunina, “Lax equations for relativistic GL(NM,C) Gaudin models on elliptic curve”, J. Phys. A, 55:39 (2022), 395202–31  mathnet  crossref  mathscinet
    6. M. A. Olshanetsky, A. V. Zotov, A. M. Levin, “2D Integrable systems, 4D Chern–Simons theory and affine Higgs bundles”, Eur. Phys. J. C, Part. Fields, 82 (2022), 635–14  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:282
    Full-text PDF :67
    References:76
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025