Аннотация:
В статье показано, что при выполнении нескольких условий ортогональности и правильном выборе дополнительных параметров малое компактное возмущение оператора Гельмгольца не выводит из спектра простое собственное число, расположенное между порогами непрерывного спектра задачи Дирихле в области с цилиндрическим выходом на бесконечность. Результат получен посредством асимптотического анализа расширенной матрицы рассеяния.
Ключевые слова:
непрерывный и точечный спектр, возмущение собственного числа, локальное возмущение поверхности квантового волновода.
Образец цитирования:
С. А. Назаров, “Принудительная устойчивость простого собственного числа на непрерывном спектре волновода”, Функц. анализ и его прил., 47:3 (2013), 37–53; Funct. Anal. Appl., 47:3 (2013), 195–209
\RBibitem{Naz13}
\by С.~А.~Назаров
\paper Принудительная устойчивость простого собственного числа на непрерывном спектре волновода
\jour Функц. анализ и его прил.
\yr 2013
\vol 47
\issue 3
\pages 37--53
\mathnet{http://mi.mathnet.ru/faa3117}
\crossref{https://doi.org/10.4213/faa3117}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3154838}
\elib{https://elibrary.ru/item.asp?id=20730699}
\transl
\jour Funct. Anal. Appl.
\yr 2013
\vol 47
\issue 3
\pages 195--209
\crossref{https://doi.org/10.1007/s10688-013-0026-8}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000324231800004}
\elib{https://elibrary.ru/item.asp?id=20456717}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84884380082}
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/faa3117
https://doi.org/10.4213/faa3117
https://www.mathnet.ru/rus/faa/v47/i3/p37
Эта публикация цитируется в следующих 61 статьяx:
С. А. Назаров, “Распределение мод собственных колебаний в пластине, заглубленной в абсолютно жёсткое полупространство”, Математические вопросы теории распространения волн. 53, Зап. научн. сем. ПОМИ, 521, ПОМИ, СПб., 2023, 154–199
Lucas Chesnel, Jérémy Heleine, Sergei A. Nazarov, Jari Taskinen, “Acoustic waveguide with a dissipative inclusion”, ESAIM: M2AN, 57:6 (2023), 3585
S. A. Nazarov, “Natural Oscillations of an Elastic Half-Strip with a Different Arrangement of Fixation Areas of Its Edges”, Акустический журнал, 69:4 (2023), 398
S. A. Nazarov, “Natural Oscillations of an Elastic Half-Strip with a Different Arrangement of Fixation Areas of Its Edges”, Acoust. Phys., 69:4 (2023), 424
С. А. Назаров, “Асимптотический анализ спектра квантового волновода с широким “окном” Неймана в свете механики трещин”, Математические вопросы теории распространения волн. 52, Зап. научн. сем. ПОМИ, 516, ПОМИ, СПб., 2022, 176–237
S. A. Nazarov, “Abnormal Transmission of Elastic Waves through a Thin Ligament Connecting Two Planar Isotropic Waveguides”, Mech. Solids, 57:8 (2022), 1908
Lucas Chesnel, Jérémy Heleine, Sergei A. Nazarov, “Acoustic passive cloaking using thin outer resonators”, Z. Angew. Math. Phys., 73:3 (2022)
С. А. Назаров, “Сохранение пороговых резонансов и отцепление собственных чисел от порога непрерывного спектра квантовых волноводов”, Матем. сб., 212:7 (2021), 84–121; S. A. Nazarov, “The preservation of threshold resonances and the splitting off of eigenvalues from the threshold of the continuous spectrum of quantum waveguides”, Sb. Math., 212:7 (2021), 965–1000
Nazarov S.A., Chesnel L., “Transmission and Trapping of Waves in An Acoustic Waveguide With Perforated Cross-Walls”, Fluid Dyn., 56:8 (2021), 1070–1093
S. A. Nazarov, “Scattering of Low-Frequency Elastic Waves in An Infinite Kirchhoff Plate”, J Math Sci, 252:5 (2021), 664
S. A. Nazarov, “Trapping of Waves in Semiinfinite Kirchhoff Plate with Periodically Damaged Edge”, J Math Sci, 257:5 (2021), 684
С. А. Назаров, Л. Шенель, “Аномалии распространения акустических волн в двух полубесконечных цилиндрах, соединенных тонким уплощенным каналом”, Ж. вычисл. матем. и матем. физ., 61:4 (2021), 666–683; S. A. Nazarov, L. Chesnel, “Anomalies of acoustic wave propagation in two semi-infinite cylinders connected by a flattened ligament”, Comput. Math. Math. Phys., 61:4 (2021), 646–663
V. A. Kozlov, S. A. Nazarov, A. Orlof, “Trapped Modes in Armchair Graphene Nanoribbons”, J Math Sci, 252:5 (2021), 624
С. А. Назаров, “Построение захваченной волны на низких частотах в упругом волноводе”, Функц. анализ и его прил., 54:1 (2020), 41–57; S. A. Nazarov, “Construction of a trapped mode with a small frequency in an elastic waveguide”, Funct. Anal. Appl., 54:1 (2020), 31–44
С. А. Назаров, “Волновод с двойным пороговым резонансом на простом пороге”, Матем. сб., 211:8 (2020), 20–67; S. A. Nazarov, “Waveguide with double threshold resonance at a simple threshold”, Sb. Math., 211:8 (2020), 1080–1126
С. А. Назаров, “Пороговые резонансы и виртуальные уровни в спектре цилиндрических и периодических волноводов”, Изв. РАН. Сер. матем., 84:6 (2020), 73–130; S. A. Nazarov, “Threshold resonances and virtual levels in the spectrum of cylindrical and periodic waveguides”, Izv. Math., 84:6 (2020), 1105–1160
Ф. Л. Бахарев, С. А. Назаров, “Дискретный спектр бесконечных пластин Кирхгофа в виде локально возмущенной полосы”, Сиб. матем. журн., 61:2 (2020), 297–313; F. L. Bakharev, S. A. Nazarov, “The discrete spectrum of an infinite kirchhoff plate in the form of a locally perturbed strip”, Siberian Math. J., 61:2 (2020), 233–247
Nazarov S.A., “Anomalies of Acoustic Wave Scattering Near the Cut-Off Points of Continuous Spectrum (a Review)”, Acoust. Phys., 66:5 (2020), 477–494
Chesnel L., Nazarov S.A., “Exact Zero Transmission During the Fano Resonance Phenomenon in Non-Symmetric Waveguides”, Z. Angew. Math. Phys., 71:3 (2020), 82
Chesnel L. Nazarov S.A. Taskinen J., “Surface Waves in a Channel With Thin Tunnels and Wells At the Bottom: Non-Reflecting Underwater Topography”, Asymptotic Anal., 118:1-2 (2020), 81–122