Аннотация:
In 1996 Sabitov proved that the volume V of an arbitrary simplicial polyhedron P in the 3-dimensional Euclidean space R3 satisfies a monic (with respect to V) polynomial relation F(V,ℓ)=0, where ℓ denotes the set of the squares of edge lengths of P. In 2011 the author proved the same assertion for polyhedra in R4. In this paper, we prove that the same result is true in arbitrary dimension n⩾3. Moreover, we show that this is true not only for simplicial polyhedra, but for all polyhedra with triangular 2-faces. As a corollary, we obtain the proof in arbitrary dimension of the well-known Bellows Conjecture posed by Connelly in 1978. This conjecture claims that the volume of any flexible polyhedron is constant. Moreover, we obtain the following stronger result. If Pt, t∈[0,1], is a continuous deformation of a polyhedron such that the combinatorial type of Pt does not change and every 2-face of Pt remains congruent to the corresponding face of P0, then the volume of Pt is constant. We also obtain non-trivial estimates for the oriented volumes of complex simplicial polyhedra in Cn from their orthogonal edge lengths.
The work was partially supported by the Russian Foundation for Basic Research
(projects 12-01-31444 and 11-01-00694), by a grant of the President of the Russian Federation (projects
MD-4458.2012.1 and MD-2969.2014.1), by a grant of the Government of the Russian Federation (project
2010-220-01-077), by a programme of the Branch of Mathematical Sciences of the Russian Academy of
Sciences, and by a grant from Dmitry Zimin’s “Dynasty” foundation.
Поступила в редакцию: 23.12.2012 Принята в печать: 19.06.2014
Реферативные базы данных:
Тип публикации:
Статья
Язык публикации: английский
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/dcg3
Эта публикация цитируется в следующих 11 статьяx:
Nikolay Abrosimov, Alexander Kolpakov, Alexander Mednykh, “Euclidean volumes of hyperbolic knots”, Proc. Amer. Math. Soc., 2023
V. A. Krasnov, “Volumes of Polyhedra in Non-Euclidean Spaces of Constant Curvature”, J Math Sci, 267:5 (2022), 554
Victor Alexandrov, “Necessary conditions for the extendibility of a first-order flex of a polyhedron to its flex”, Beitr Algebra Geom, 61:2 (2020), 355
Victor Alexandrov, “The spectrum of the Laplacian in a domain bounded by a flexible polyhedron in Rd does not always remain unaltered during the flex”, J. Geom., 111:2 (2020)
Victor Alexandrov, “A sufficient condition for a polyhedron to be rigid”, J. Geom., 110:2 (2019)
А. А. Гайфуллин, Л. С. Игнащенко, “Инвариант Дена и равносоставленность изгибаемых многогранников”, Труды МИАН, 302 (2018), 143–160; Alexander A. Gaifullin, Leonid S. Ignashchenko, “Dehn invariant and scissors congruence of flexible polyhedra”, Proc. Steklov Inst. Math., 302 (2018), 130–145
Victor Alexandrov, “How many times can the volume of a convex polyhedron be increased by isometric deformations?”, Beitr Algebra Geom, 58:3 (2017), 549
Arseniy Akopyan, Imre Bárány, Sinai Robins, “Algebraic vertices of non-convex polyhedra”, Advances in Mathematics, 308 (2017), 627
А. А. Гайфуллин, “Вложенные изгибаемые сферические кросс-политопы с непостоянными объемами”, Труды МИАН, 288 (2015), 67–94; A. A. Gaifullin, “Embedded flexible spherical cross-polytopes with nonconstant volumes”, Proc. Steklov Inst. Math., 288 (2015), 56–80
А. А. Гайфуллин, “Аналитическое продолжение объема и гипотеза кузнечных мехов в пространствах Лобачевского”, Матем. сб., 206:11 (2015), 61–112; A. A. Gaifullin, “The analytic continuation of volume and the Bellows conjecture in Lobachevsky spaces”, Sb. Math., 206:11 (2015), 1564–1609
А. А. Гайфуллин, “Изгибаемые кросс-политопы в пространствах постоянной кривизны”, Труды МИАН, 286 (2014), 88–128; A. A. Gaifullin, “Flexible cross-polytopes in spaces of constant curvature”, Proc. Steklov Inst. Math., 286 (2014), 77–113