Аннотация:
Построены примеры вложенных изгибаемых кросс-политопов в сферах всех размерностей. Эти примеры представляют интерес с двух точек зрения. Во-первых, в размерностях 4 и выше это первые примеры вложенных изгибаемых многогранников. Следует отметить, что, в отличие от сфер, в евклидовых пространствах и пространствах Лобачевского размерностей 4 и выше до сих пор не известно ни одного примера вложенного изгибаемого многогранника. Во-вторых, показано, что объемы построенных изгибаемых кросс-политопов непостоянны в процессе изгибания. Таким образом, эти кросс-политопы дают контрпримеры к гипотезе о кузнечных мехах для сферических многогранников. Ранее контрпример к этой гипотезе был построен только в размерности 3 (В. А. Александров, 1997), и он не был вложенным. Для изгибаемых многогранников в сферах предложено ослабление гипотезы о кузнечных мехах, которое названо модифицированной гипотезой о кузнечных мехах. Показано, что эта гипотеза выполняется для всех изгибаемых кросс-политопов простейшего типа, среди которых находятся наши контрпримеры к обычной гипотезе о кузнечных мехах. Попутно получен ряд геометрических результатов об изгибаемых кросс-политопах простейшего типа, в частности, выписаны соотношения на объемы их граней коразмерностей 1 и 2.
Работа выполнена при частичной финансовой поддержке Российского фонда фундаментальных исследований (проекты 13-01-12469 и 14-01-00537), гранта Президента РФ (проект МД-2969.2014.1) и фонда Дмитрия Зимина “Династия”.
Образец цитирования:
А. А. Гайфуллин, “Вложенные изгибаемые сферические кросс-политопы с непостоянными объемами”, Геометрия, топология и приложения, Сборник статей. К 70-летию со дня рождения профессора Николая Петровича Долбилина, Труды МИАН, 288, МАИК «Наука/Интерпериодика», М., 2015, 67–94; Proc. Steklov Inst. Math., 288 (2015), 56–80
В. А. Александров, “Распознавание аффинно-эквивалентных многогранников по их натуральным разверткам”, Сиб. матем. журн., 64:2 (2023), 252–275; V. A. Alexandrov, “Recognition of affine-equivalent polyhedra by their natural developments”, Siberian Math. J., 64:2 (2023), 269–286
V. A. Krasnov, “Volumes of Polyhedra in Non-Euclidean Spaces of Constant Curvature”, J Math Sci, 267:5 (2022), 554
Gallet M., Grasegger G., Legersky J., Schicho J., “On the Existence of Paradoxical Motions of Generically Rigid Graphs on the Sphere”, SIAM Discret. Math., 35:1 (2021), 325–361
V. Alexandrov, “The spectrum of the Laplacian in a domain bounded by a flexible polyhedron in R-D does not always remain unaltered during the flex”, J. Geom., 111:2 (2020), 32
В. А. Краснов, “Объемы многогранников в неевклидовых пространствах постоянной кривизны”, Алгебра, геометрия и топология, СМФН, 66, № 4, Российский университет дружбы народов, М., 2020, 558–679
V. Alexandrov, “A sufficient condition for a polyhedron to be rigid”, J. Geom., 110:2 (2019), UNSP 38
А. А. Гайфуллин, Л. С. Игнащенко, “Инвариант Дена и равносоставленность изгибаемых многогранников”, Топология и физика, Сборник статей. К 80-летию со дня рождения академика Сергея Петровича Новикова, Труды МИАН, 302, МАИК «Наука/Интерпериодика», М., 2018, 143–160; Alexander A. Gaifullin, Leonid S. Ignashchenko, “Dehn invariant and scissors congruence of flexible polyhedra”, Proc. Steklov Inst. Math., 302 (2018), 130–145
Alexander A. Gaifullin, “The bellows conjecture for small flexible polyhedra in non-Euclidean spaces”, Mosc. Math. J., 17:2 (2017), 269–290
И. Х. Сабитов, “Московское математическое общество и метрическая геометрия: от Петерсона до современных исследований”, Тр. ММО, 77, № 2, МЦНМО, М., 2016, 184–218; I. Kh. Sabitov, “The Moscow Mathematical Society and metric geometry: from Peterson to contemporary research”, Trans. Moscow Math. Soc., 77 (2016), 149–175
А. А. Гайфуллин, “Аналитическое продолжение объема и гипотеза кузнечных мехов в пространствах Лобачевского”, Матем. сб., 206:11 (2015), 61–112; A. A. Gaifullin, “The analytic continuation of volume and the Bellows conjecture in Lobachevsky spaces”, Sb. Math., 206:11 (2015), 1564–1609