Труды Математического института имени В. А. Стеклова
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Скоро в журнале
Архив
Импакт-фактор
Правила для авторов
Лицензионный договор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Труды МИАН:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Труды Математического института имени В. А. Стеклова, 2015, том 288, страницы 67–94
DOI: https://doi.org/10.1134/S0371968515010057
(Mi tm3598)
 

Эта публикация цитируется в 10 научных статьях (всего в 10 статьях)

Вложенные изгибаемые сферические кросс-политопы с непостоянными объемами

А. А. Гайфуллинabc

a Московский государственный университет им. М. В. Ломоносова, Москва, Россия
b Математический институт им. В. А. Стеклова РАН, Москва, Россия
c Институт проблем передачи информации им. А. А. Харкевича РАН, Москва, Россия
Список литературы:
Аннотация: Построены примеры вложенных изгибаемых кросс-политопов в сферах всех размерностей. Эти примеры представляют интерес с двух точек зрения. Во-первых, в размерностях 4 и выше это первые примеры вложенных изгибаемых многогранников. Следует отметить, что, в отличие от сфер, в евклидовых пространствах и пространствах Лобачевского размерностей 4 и выше до сих пор не известно ни одного примера вложенного изгибаемого многогранника. Во-вторых, показано, что объемы построенных изгибаемых кросс-политопов непостоянны в процессе изгибания. Таким образом, эти кросс-политопы дают контрпримеры к гипотезе о кузнечных мехах для сферических многогранников. Ранее контрпример к этой гипотезе был построен только в размерности 3 (В. А. Александров, 1997), и он не был вложенным. Для изгибаемых многогранников в сферах предложено ослабление гипотезы о кузнечных мехах, которое названо модифицированной гипотезой о кузнечных мехах. Показано, что эта гипотеза выполняется для всех изгибаемых кросс-политопов простейшего типа, среди которых находятся наши контрпримеры к обычной гипотезе о кузнечных мехах. Попутно получен ряд геометрических результатов об изгибаемых кросс-политопах простейшего типа, в частности, выписаны соотношения на объемы их граней коразмерностей 1 и 2.
Финансовая поддержка Номер гранта
Российский фонд фундаментальных исследований 13-01-12469
14-01-00537
Министерство образования и науки Российской Федерации МД-2969.2014.1
Фонд Дмитрия Зимина «Династия»
Работа выполнена при частичной финансовой поддержке Российского фонда фундаментальных исследований (проекты 13-01-12469 и 14-01-00537), гранта Президента РФ (проект МД-2969.2014.1) и фонда Дмитрия Зимина “Династия”.
Поступило в октябре 2014 г.
Англоязычная версия:
Proceedings of the Steklov Institute of Mathematics, 2015, Volume 288, Pages 56–80
DOI: https://doi.org/10.1134/S0081543815010058
Реферативные базы данных:
Тип публикации: Статья
УДК: 514.114
Образец цитирования: А. А. Гайфуллин, “Вложенные изгибаемые сферические кросс-политопы с непостоянными объемами”, Геометрия, топология и приложения, Сборник статей. К 70-летию со дня рождения профессора Николая Петровича Долбилина, Труды МИАН, 288, МАИК «Наука/Интерпериодика», М., 2015, 67–94; Proc. Steklov Inst. Math., 288 (2015), 56–80
Цитирование в формате AMSBIB
\RBibitem{Gai15}
\by А.~А.~Гайфуллин
\paper Вложенные изгибаемые сферические кросс-политопы с~непостоянными объемами
\inbook Геометрия, топология и приложения
\bookinfo Сборник статей. К~70-летию со дня рождения профессора Николая Петровича Долбилина
\serial Труды МИАН
\yr 2015
\vol 288
\pages 67--94
\publ МАИК «Наука/Интерпериодика»
\publaddr М.
\mathnet{http://mi.mathnet.ru/tm3598}
\crossref{https://doi.org/10.1134/S0371968515010057}
\elib{https://elibrary.ru/item.asp?id=23302165}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2015
\vol 288
\pages 56--80
\crossref{https://doi.org/10.1134/S0081543815010058}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000353881900005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84928718929}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/tm3598
  • https://doi.org/10.1134/S0371968515010057
  • https://www.mathnet.ru/rus/tm/v288/p67
  • Доклады по теме:
    Эта публикация цитируется в следующих 10 статьяx:
    1. В. А. Александров, “Распознавание аффинно-эквивалентных многогранников по их натуральным разверткам”, Сиб. матем. журн., 64:2 (2023), 252–275  mathnet  crossref  mathscinet; V. A. Alexandrov, “Recognition of affine-equivalent polyhedra by their natural developments”, Siberian Math. J., 64:2 (2023), 269–286  crossref
    2. V. A. Krasnov, “Volumes of Polyhedra in Non-Euclidean Spaces of Constant Curvature”, J Math Sci, 267:5 (2022), 554  crossref
    3. Gallet M., Grasegger G., Legersky J., Schicho J., “On the Existence of Paradoxical Motions of Generically Rigid Graphs on the Sphere”, SIAM Discret. Math., 35:1 (2021), 325–361  crossref  mathscinet  isi  scopus
    4. V. Alexandrov, “The spectrum of the Laplacian in a domain bounded by a flexible polyhedron in R-D does not always remain unaltered during the flex”, J. Geom., 111:2 (2020), 32  crossref  mathscinet  isi
    5. В. А. Краснов, “Объемы многогранников в неевклидовых пространствах постоянной кривизны”, Алгебра, геометрия и топология, СМФН, 66, № 4, Российский университет дружбы народов, М., 2020, 558–679  mathnet  crossref
    6. V. Alexandrov, “A sufficient condition for a polyhedron to be rigid”, J. Geom., 110:2 (2019), UNSP 38  crossref  mathscinet  isi  scopus
    7. А. А. Гайфуллин, Л. С. Игнащенко, “Инвариант Дена и равносоставленность изгибаемых многогранников”, Топология и физика, Сборник статей. К 80-летию со дня рождения академика Сергея Петровича Новикова, Труды МИАН, 302, МАИК «Наука/Интерпериодика», М., 2018, 143–160  mathnet  crossref  mathscinet  elib; Alexander A. Gaifullin, Leonid S. Ignashchenko, “Dehn invariant and scissors congruence of flexible polyhedra”, Proc. Steklov Inst. Math., 302 (2018), 130–145  crossref  isi
    8. Alexander A. Gaifullin, “The bellows conjecture for small flexible polyhedra in non-Euclidean spaces”, Mosc. Math. J., 17:2 (2017), 269–290  mathnet  crossref  mathscinet
    9. И. Х. Сабитов, “Московское математическое общество и метрическая геометрия: от Петерсона до современных исследований”, Тр. ММО, 77, № 2, МЦНМО, М., 2016, 184–218  mathnet  elib; I. Kh. Sabitov, “The Moscow Mathematical Society and metric geometry: from Peterson to contemporary research”, Trans. Moscow Math. Soc., 77 (2016), 149–175  crossref
    10. А. А. Гайфуллин, “Аналитическое продолжение объема и гипотеза кузнечных мехов в пространствах Лобачевского”, Матем. сб., 206:11 (2015), 61–112  mathnet  crossref  mathscinet  zmath  adsnasa  elib; A. A. Gaifullin, “The analytic continuation of volume and the Bellows conjecture in Lobachevsky spaces”, Sb. Math., 206:11 (2015), 1564–1609  crossref  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Статистика просмотров:
    Страница аннотации:525
    PDF полного текста:113
    Список литературы:83
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2025