|
Объемы многогранников в неевклидовых пространствах постоянной кривизны
В. А. Краснов Российский университет дружбы народов, 117198, Москва, ул. Миклухо-Маклая, д. 6
Аннотация:
Вычисление объемов многогранников является классической задачей геометрии, известной со времен античной математики и не потерявшей актуальность в настоящее время. Проблема получения формул объемов трехмерных неевклидовых многогранников заданного комбинаторного типа весьма сложна. В настоящее время она полностью решена для самого простого с комбинаторной точки зрения многогранника — тетраэдра. Однако известно, что в случае многогранника специального вида формула для его объема заметно упрощается. Этот факт заметил еще Н. И. Лобачевский, который нашел объем так называемого идеального тетраэдра в гиперболическом пространстве (все вершины данного тетраэдра находятся на абсолюте). В настоящем обзоре будут представлены основные результаты об объемах произвольных неевклидовых тетраэдров, а также многогранников специального вида (как тетраэдров, так и многогранников, имеющих более сложное комбинаторное строение) в трехмерном сферическом и гиперболическом пространствах постоянной кривизны K=1 и K=−1 соответственно. Кроме того, мы изложим новый метод И. Х. Сабитова вычисления объемов тел в гиперболическом пространстве (заданном моделью Пуанкаре в верхнем полупространстве), который позволяет получать явные формулы для объемов многогранников произвольной размерности через координаты вершин. При этом, наряду с обзором основных формул для объемов неевклидовых многогранников, мы будем приводить доказательства (или наброски доказательств) данных формул. Это поможет сформировать у читателя представление об основных методах вычисления объемов тел в неевклидовых пространствах постоянной кривизны.
Образец цитирования:
В. А. Краснов, “Объемы многогранников в неевклидовых пространствах постоянной кривизны”, Алгебра, геометрия и топология, СМФН, 66, № 4, Российский университет дружбы народов, М., 2020, 558–679
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/cmfd410 https://www.mathnet.ru/rus/cmfd/v66/i4/p558
|
Статистика просмотров: |
Страница аннотации: | 331 | PDF полного текста: | 333 | Список литературы: | 48 |
|