В. А. Слоущ, Т. А. Суслина, “Операторные оценки при усреднении эллиптических операторов высокого порядка с периодическими коэффициентами”, Алгебра и анализ, 35:2 (2023), 107–173; V. A. Sloushch, T. A. Suslina, “Operator estimates for homogenization of higher-order elliptic operators with periodic coefficients”, St. Petersburg Math. J., 35:2 (2024), 327–375
С. Е. Пастухова, “$L^2$-оценки погрешности усреднения параболических уравнений с учетом корректоров”, СМФН, 69, № 1, Российский университет дружбы народов, М., 2023, 134–151
Т. А. Суслина, “Теоретико-операторный подход к усреднению уравнений типа Шрёдингера с периодическими коэффициентами”, УМН, 78:6(474) (2023), 47–178; T. A. Suslina, “Operator-theoretic approach to the homogenization of Schrödinger-type equations with periodic coefficients”, Russian Math. Surveys, 78:6 (2023), 1023–1154
S. E. Pastukhova, “Homogenization Estimates for Parabolic Equations with Correctors”, J Math Sci, 276:1 (2023), 137
Н. Н. Сеник, “Об усреднении локально периодических эллиптических и параболических операторов”, Функц. анализ и его прил., 54:1 (2020), 87–92; N. N. Senik, “On homogenization for locally periodic elliptic and parabolic operators”, Funct. Anal. Appl., 54:1 (2020), 68–72
В. В. Жиков, С. Е. Пастухова, “Об операторных оценках в теории усреднения”, УМН, 71:3(429) (2016), 27–122; V. V. Zhikov, S. E. Pastukhova, “Operator estimates in homogenization theory”, Russian Math. Surveys, 71:3 (2016), 417–511
С. Е. Пастухова, “Аппроксимации операторной экспоненты в периодической задаче диффузии со сносом”, Матем. сб., 204:2 (2013), 133–160; S. E. Pastukhova, “Approximations of the operator exponential in a periodic diffusion problem with drift”, Sb. Math., 204:2 (2013), 280–306