Аннотация:
In 1996 I.Kh. Sabitov proved that the volume of a simplicial polyhedron in a 3-dimensional Euclidean space is a root of certain monic polynomial with coefficients depending on the combinatorial type and on edge lengths of the polyhedron only. Moreover, the coefficients of this polynomial are polynomials in edge lengths of the polyhedron. This result implies that the volume of a simplicial polyhedron with fixed combinatorial type and edge lengths can take only finitely many values. In particular, this yields that the volume of a flexible polyhedron in a 3-dimensional Euclidean space is constant. Until now it has been unknown whether these results can be obtained in dimensions greater than 3. In this paper we prove that all these results hold for polyhedra in a 4-dimensional Euclidean space.
The work was partially supported by the Russian Foundation for Basic Research (projects 10-01-92102 and 11-01-00694), by a grant of the Government of the Russian Federation (project 11.G34.31.0005), by a grant from Dmitri Ziminʼs “Dynasty” foundation and by a programme of the Branch of Mathematical Sciences of the Russian Academy of Sciences.
Поступила в редакцию: 22.10.2011 Принята в печать: 18.11.2013
Nikolay Abrosimov, Alexander Kolpakov, Alexander Mednykh, “Euclidean volumes of hyperbolic knots”, Proc. Amer. Math. Soc., 2023
V. A. Krasnov, “Volumes of Polyhedra in Non-Euclidean Spaces of Constant Curvature”, J Math Sci, 267:5 (2022), 554
Victor Alexandrov, “The spectrum of the Laplacian in a domain bounded by a flexible polyhedron in Rd does not always remain unaltered during the flex”, J. Geom., 111:2 (2020)
Victor Alexandrov, “Necessary conditions for the extendibility of a first-order flex of a polyhedron to its flex”, Beitr Algebra Geom, 61:2 (2020), 355
Victor Alexandrov, “A sufficient condition for a polyhedron to be rigid”, J. Geom., 110:2 (2019)
А. А. Гайфуллин, Л. С. Игнащенко, “Инвариант Дена и равносоставленность изгибаемых многогранников”, Труды МИАН, 302 (2018), 143–160; Alexander A. Gaifullin, Leonid S. Ignashchenko, “Dehn invariant and scissors congruence of flexible polyhedra”, Proc. Steklov Inst. Math., 302 (2018), 130–145
В. А. Александров, “Множество изгибаемых невырожденных многогранников данного комбинаторного строения не всегда является алгебраическим”, Сиб. матем. журн., 56:4 (2015), 723–731; V. A. Alexandrov, “The set of nondegenerate flexible polyhedra of a prescribed combinatorial structure is not always algebraic”, Siberian Math. J., 56:4 (2015), 569–574
А. А. Гайфуллин, “Вложенные изгибаемые сферические кросс-политопы с непостоянными объемами”, Труды МИАН, 288 (2015), 67–94; A. A. Gaifullin, “Embedded flexible spherical cross-polytopes with nonconstant volumes”, Proc. Steklov Inst. Math., 288 (2015), 56–80
А. А. Гайфуллин, “Аналитическое продолжение объема и гипотеза кузнечных мехов в пространствах Лобачевского”, Матем. сб., 206:11 (2015), 61–112; A. A. Gaifullin, “The analytic continuation of volume and the Bellows conjecture in Lobachevsky spaces”, Sb. Math., 206:11 (2015), 1564–1609
A. A. Gaifullin, S. A. Gaifullin, “Deformations of period lattices of flexible polyhedral surfaces”, Discrete Comput. Geom., 51:3 (2014), 650–665
А. А. Гайфуллин, “Изгибаемые кросс-политопы в пространствах постоянной кривизны”, Труды МИАН, 286 (2014), 88–128; A. A. Gaifullin, “Flexible cross-polytopes in spaces of constant curvature”, Proc. Steklov Inst. Math., 286 (2014), 77–113