Аннотация:
We investigate certain ideals (associated with Blaschke products) of the analytic Lipschitz algebra Aα, with α>1, that fail to be “ideal spaces”. The latter means that the ideals in question are not describable by any size condition on the function's modulus. In the case where α=n is an integer, we study this phenomenon for the algebra H∞n={f:f(n)∈H∞} rather than for its more manageable Zygmund-type version. This part is based on a new theorem concerning the canonical factorization in H∞n.
Образец цитирования:
K. M. Dyakonov, “Blaschke products and nonideal ideals in higher order Lipschitz algebras”, Алгебра и анализ, 21:6 (2009), 182–201; St. Petersburg Math. J., 21:6 (2010), 979–993
\RBibitem{Dya09}
\by K.~M.~Dyakonov
\paper Blaschke products and nonideal ideals in higher order Lipschitz algebras
\jour Алгебра и анализ
\yr 2009
\vol 21
\issue 6
\pages 182--201
\mathnet{http://mi.mathnet.ru/aa1166}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2604546}
\zmath{https://zbmath.org/?q=an:1218.30154}
\transl
\jour St. Petersburg Math. J.
\yr 2010
\vol 21
\issue 6
\pages 979--993
\crossref{https://doi.org/10.1090/S1061-0022-2010-01127-0}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000284238100006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84871437468}
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/aa1166
https://www.mathnet.ru/rus/aa/v21/i6/p182
Эта публикация цитируется в следующих 6 статьяx:
Н. А. Широков, “Факторизация Неванлинны в весовых классах аналитических функций переменной гладкости”, Изв. РАН. Сер. матем., 85:3 (2021), 261–283; N. A. Shirokov, “Nevanlinna factorization in weighted classes of analytic functions of variable smoothness”, Izv. Math., 85:3 (2021), 582–604
Н. А. Широков, “Внутренние множители аналитических функций переменной гладкости в замкнутом круге”, Алгебра и анализ, 32:5 (2020), 145–181; N. A. Shirokov, “Inner factors of analytic functions of variable smoothness in the closed disk”, St. Petersburg Math. J., 32:5 (2021), 929–954
Dyakonov K.M., “Factorization and Non-Factorization Theorems For Pseudo Continuable Functions”, Adv. Math., 320 (2017), 630–651
Konstantin M. Dyakonov, Association for Women in Mathematics Series, 5, Harmonic Analysis, Partial Differential Equations, Banach Spaces, and Operator Theory (Volume 2), 2017, 239
Colonna F., Li S., “Weighted Composition Operators From Into the Zygmund Spaces”, Complex Anal. Oper. Theory, 7:5 (2013), 1495–1512
Dyakonov K.M., “Wronskians and Deep Zeros of Holomorphic Functions”, J. Math. Pures Appl., 99:6 (2013), 668–684