Аннотация:
При анализе сходимости приближенных решений уравнений динамики жидкости к точным часто используется неравенство Ладыженской–Бабушки–Брецци (inf-sup-условие). Входящая в него константа зависит от формы области и определяет эффективность различных алгоритмов. В работе получена ее асимптотика и двусторонние оценки в прямоугольных областях. Для этого используется новый способ получения оценок собственных значений некоторой спектральной задачи с седловым оператором Стокса.
Библиография: 13 названий.
Образец цитирования:
М. А. Ольшанский, Е. В. Чижонков, “О наилучшей константе в inf-sup-условии для вытянутых прямоугольных областей”, Матем. заметки, 67:3 (2000), 387–396; Math. Notes, 67:3 (2000), 325–332
S. Repin, “A posteriori error identities for the evolutionary Stokes problem”, Краевые задачи математической физики и смежные вопросы теории функций. 51, К юбилею Нины Николаевны Уральцевой, Зап. научн. сем. ПОМИ, 536, ПОМИ, СПб., 2024, 261–285
Andreas Meier, Eberhard Bänsch, Florian Frank, “Schur preconditioning of the Stokes equations in channel-dominated domains”, Computer Methods in Applied Mechanics and Engineering, 398 (2022), 115264
D. Pauly, S. Repin, “A posteriori estimates for the stationary Stokes problem in exterior domains”, Алгебра и анализ, 31:3 (2019), 184–215; St. Petersburg Math. J., 31:3 (2020), 533–555
P. Neittaanmäki, M. Nokka, S. Repin, “Estimates of the Distance to Exact Solutions of the Stokes Problem with Slip and Leak Boundary Conditions”, J Math Sci, 242:2 (2019), 280
Repin S., “Localized Forms of the Lbb Condition and a Posteriori Estimates For Incompressible Media Problems”, Math. Comput. Simul., 145 (2018), 156–170
S. Repin, “On projectors to subspaces of vector valued functions subject to conditions of the divergence free type”, Краевые задачи математической физики и смежные вопросы теории функций. 46, Зап. научн. сем. ПОМИ, 459, ПОМИ, СПб., 2017, 83–103; J. Math. Sci. (N. Y.), 236:4 (2019), 430–445
S. Repin, “On variational representations of the constant in the inf sup condition for the Stokes problem”, Краевые задачи математической физики и смежные вопросы теории функций. 45, Посвящается юбилею Григория Александровича СЕРЕГИНА, Зап. научн. сем. ПОМИ, 444, ПОМИ, СПб., 2016, 110–123; J. Math. Sci. (N. Y.), 224:3 (2017), 456–467
Bringmann P., Carstensen C., Merdon C., “Guaranteed velocity error control for the pseudostress approximation of the Stokes equations”, Numer. Meth. Part Differ. Equ., 32:5 (2016), 1411–1432
Cai M., “Analysis of Some Projection Method Based Preconditioners For Models of Incompressible Flow”, Appl. Numer. Math., 90 (2015), 77–90
Repin S., “Estimates of the Distance To the Set of Solenoidal Vector Fields and Applications To a Posteriori Error Control”, Comput. Methods Appl. Math., 15:4 (2015), 515–530
S. Repin, “Estimates of the distance to the set of divergence free fields”, Краевые задачи математической физики и смежные вопросы теории функций. 44, Посвящается юбилею Всеволода Алексеевича СОЛОННИКОВА, Зап. научн. сем. ПОМИ, 425, ПОМИ, СПб., 2014, 99–116; J. Math. Sci. (N. Y.), 210:6 (2015), 822–834
Cai M., Nonaka A., Bell J.B., Griffith B.E., Donev A., “Efficient Variable-Coefficient Finite-Volume Stokes Solvers”, Commun. Comput. Phys., 16:5 (2014), 1263–1297
S. Repin, “Estimates of deviations from exact solution of the generalized Oseen problem”, Краевые задачи математической физики и смежные вопросы теории функций. 43, Зап. научн. сем. ПОМИ, 410, ПОМИ, СПб., 2013, 110–130; J. Math. Sci. (N. Y.), 195:1 (2013), 64–75
Mao, SP, “EXPLICIT ERROR ESTIMATES FOR MIXED AND NONCONFORMING FINITE ELEMENTS”, Journal of Computational Mathematics, 27:4 (2009), 425
S. Repin, R. Stenberg, “A posteriori estimates for a generalized Stokes problem”, Краевые задачи математической физики и смежные вопросы теории функций. 39, Зап. научн. сем. ПОМИ, 362, ПОМИ, СПб., 2008, 272–302; J. Math. Sci. (N. Y.), 159:4 (2009), 541–558
Fuchs, M, “A posteriori error estimates of functional type for variational problems related to generalized Newtonian fluids”, Mathematical Methods in the Applied Sciences, 29:18 (2006), 2225
Dobrowolski, M, “On the LBB condition in the numerical analysis of the Stokes equations”, Applied Numerical Mathematics, 54:3–4 (2005), 314
С. И. Репин, “Оценки отклонения от точных решений некоторых краевых задач с условием несжимаемости”, Алгебра и анализ, 16:5 (2004), 124–161; S. I. Repin, “Estimates of deviation from the exact solutions for some boundary-value problems with incompressibilily condition”, St. Petersburg Math. J., 16:5 (2005), 837–862
Dobrowolski, M, “On the LBB constant on stretched domains”, Mathematische Nachrichten, 254 (2003), 64
Stoyan, G, “Iterative Stokes solvers in the harmonic Velte subspace”, Computing, 67:1 (2001), 13