Аннотация:
Пусть S(n)=ξ(1)+⋯+ξ(n)S(n)=ξ(1)+⋯+ξ(n) – сумма независимых случайных векторов ξ(i)=ξ(n)(i)ξ(i)=ξ(n)(i) с общим распределением, зависящим от параметра nn. В работе найдены достаточные условия для справедливости равномерного варианта интегро-локальной теоремы Стоуна об асимптотике вероятности P(S(n)∈Δ[x)), где Δ[x) – куб со стороной Δ и с вершиной в точке x.
Библиография: 11 наименований.
Образец цитирования:
А. А. Боровков, А. А. Могульский, “Интегро-локальные теоремы для сумм независимых случайных векторов в схеме серий”, Матем. заметки, 79:4 (2006), 505–521; Math. Notes, 79:4 (2006), 468–482
Igor Kortchemski, Cyril Marzouk, “Large deviation local limit theorems and limits of biconditioned planar maps”, Ann. Appl. Probab., 33:5 (2023)
Л. В. Розовский, “Интегро-локальная ЦПТ для сумм независимых нерешетчатых случайных векторов”, Теория вероятн. и ее примен., 64:1 (2019), 36–52; L. V. Rozovskii, “Integro-local CLT for sums of independent nonlattice random vectors”, Theory Probab. Appl., 64:1 (2019), 27–40
Л. В. Розовский, “Об интегро-локальной ЦПТ для сумм независимых случайных векторов”, Теория вероятн. и ее примен., 64:4 (2019), 707–724; L. V. Rozovskii, “On integro-local CLT for sums of independent random vectors”, Theory Probab. Appl., 64:4 (2020), 564–578
А. В. Устинов, “Трехмерные цепные дроби и суммы Клостермана”, УМН, 70:3(423) (2015), 107–180; A. V. Ustinov, “Three-dimensional continued fractions and Kloosterman sums”, Russian Math. Surveys, 70:3 (2015), 483–556
Delbaen F., Kowalski E., Nikeghbali A., “Mod-Phi Convergence”, Int. Math. Res. Notices, 2015, no. 11, 3445–3485
А. А. Боровков, “Интегро-локальные и локальные теоремы о нормальных и больших уклонениях сумм разнораспределенных случайных величин в схеме серий”, Теория вероятн. и ее примен., 54:4 (2009), 625–644; A. A. Borovkov, “Integro-local and local theorems for normal and large deviations of sums of nonidentically distributed random variables in the scheme of series”, Theory Probab. Appl., 54:4 (2010), 571–587
А. А. Могульский, “Интегральные и интегро-локальные теоремы для сумм случайных величин с семиэкспоненциальными распределениями”, Сиб. электрон. матем. изв., 6 (2009), 251–271
А. А. Могульский, Ч. Пагма, “Сверхбольшие уклонения сумм случайных величин с общим арифметическим суперэкспоненциальным распределением”, Матем. тр., 11:1 (2008), 81–112; A. A. Mogulskiǐ, Ch. Pagma, “Superlarge deviations for sums of random variables with arithmetical super-exponential distributions”, Siberian Adv. Math., 18:3 (2008), 185–208
А. А. Могульский, “Интегро-локальная теорема, действующая на всей полуоси, для сумм случайных величин с правильно меняющимися распределениями”, Сиб. матем. журн., 49:4 (2008), 837–854; A. A. Mogul'skii, “An integro-local theorem applicable on the whole half-axis to the sums of random variables with regularly varying distributions”, Siberian Math. J., 49:4 (2008), 669–683
А. А. Боровков, А. А. Могульский, “Вероятности больших уклонений для сумм независимых случайных векторов на границе и вне крамеровской зоны. I”, Теория вероятн. и ее примен., 53:2 (2008), 336–344; A. A. Borovkov, A. A. Mogul'skii, “On Large Deviations of Sums of Independent Random Vectors on the Boundary and Outside of the Cramér Zone. I”, Theory Probab. Appl., 53:2 (2009), 301–311
А. А. Боровков, А. А. Могульский, “Вероятности больших уклонений для сумм независимых случайных векторов на границе и вне крамеровской зоны. II”, Теория вероятн. и ее примен., 53:4 (2008), 641–664; A. A. Borovkov, A. A. Mogul'skii, “On Large Deviations of Sums of Independent Random Vectors on the Boundary and Outside of the Cramér Zone. II”, Theory Probab. Appl., 53:4 (2009), 573–593
А. А. Боровков, А. А. Могульский, “Интегро-локальные и интегральные теоремы для сумм случайных величин с семиэкспоненциальными распределениями”, Сиб. матем. журн., 47:6 (2006), 1218–1257; A. A. Borovkov, A. A. Mogul'skii, “Integro-local and integral theorems for sums of random variables with semiexponential distributions”, Siberian Math. J., 47:6 (2006), 990–1026
А. А. Могульский, “О больших уклонениях времени первого прохождения для случайного блуждания с семиэкспоненциально распределенными скачками”, Сиб. матем. журн., 47:6 (2006), 1323–1341; A. A. Mogul'skii, “Large deviations of the first passage time for a random walk with semiexponentially distributed jumps”, Siberian Math. J., 47:6 (2006), 1084–1101
А. А. Боровков, А. А. Могульский, “О больших и сверхбольших уклонениях сумм независимых случайных векторов при выполнении условия Крамера. I”, Теория вероятн. и ее примен., 51:2 (2006), 260–294; A. A. Borovkov, A. A. Mogul'skii, “On large and superlarge deviations for sums of independent random vectors under the Cramer condition. I”, Theory Probab. Appl., 51:2 (2007), 227–255