Аннотация:
We obtain upper bounds for the total variation distance and the quadratic Kantorovich distance between stationary distributions of two diffusion processes with different drifts. More generally, our estimate holds for solutions to stationary Kolmogorov equations in the class of probability measures. This estimate is applied to nonlinear stationary Fokker–Planck–Kolmogorov equations for probability measures.
Ключевые слова:
Kantorovich distance, Fokker–Planck–Kolmogorov equation, invariant measure of diffusion.
Образец цитирования:
V. I. Bogachev, A. I. Kirillov, S. V. Shaposhnikov, “The Kantorovich and variation distances between invariant measures of diffusions and nonlinear stationary Fokker–Planck–Kolmogorov equations”, Math. Notes, 96:5 (2014), 855–863
\Bibitem{BogKirSha14}
\by V.~I.~Bogachev, A.~I.~Kirillov, S.~V.~Shaposhnikov
\paper The Kantorovich and variation distances between invariant measures of diffusions and nonlinear stationary Fokker--Planck--Kolmogorov equations
\jour Math. Notes
\yr 2014
\vol 96
\issue 5
\pages 855--863
\mathnet{http://mi.mathnet.ru/mzm11677}
\crossref{https://doi.org/10.1134/S0001434614110224}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3343646}
\zmath{https://zbmath.org/?q=an:1315.35221}
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/mzm11677
Эта публикация цитируется в следующих 13 статьяx:
Xing Huang, Shen Wang, Fen-Fen Yang, “Weak solution and invariant probability measure for McKean-Vlasov SDEs with integrable drifts”, Journal of Mathematical Analysis and Applications, 537:2 (2024), 128318
Martino Bardi, Hicham Kouhkouh, “Deep Relaxation of Controlled Stochastic Gradient Descent via Singular Perturbations”, SIAM J. Control Optim., 62:4 (2024), 2229
В. И. Богачев, С. В. Шапошников, “Нелинейные уравнения Фоккера–Планка–Колмогорова”, УМН, 79:5(479) (2024), 3–60; V. I. Bogachev, S. V. Shaposhnikov, “Nonlinear Fokker–Planck–Kolmogorov equations”, Russian Math. Surveys, 79:5 (2024), 751–805
Martino Bardi, Hicham Kouhkouh, “Singular perturbations in stochastic optimal control with unbounded data”, ESAIM: COCV, 29 (2023), 52
Wenpin Tang, Yuming Paul Zhang, Xun Yu Zhou, “Exploratory HJB Equations and Their Convergence”, SIAM J. Control Optim., 60:6 (2022), 3191
Lv L., Zhang Ya., Wang Z., “Information Upper Bound For Mckean-Vlasov Stochastic Differential Equations”, Chaos, 31:5 (2021), 051103
V. I. Bogachev, M. Roeckner, S. V. Shaposhnikov, “Convergence in variation of solutions of nonlinear Fokker-Planck-Kolmogorov equations to stationary measures”, J. Funct. Anal., 276:12 (2019), 3681–3713
V. I. Bogachev, A. F. Miftakhov, S. V. Shaposhnikov, “Differential properties of semigroups and estimates of distances between stationary distributions of diffusions”, Dokl. Math., 99:2 (2019), 175–180
A. Eberle, R. Zimmer, “Sticky couplings of multidimensional diffusions with different drifts”, Ann. Inst. Henri Poincare-Probab. Stat., 55:4 (2019), 2370–2394
В. И. Богачев, М. Рёкнер, С. В. Шапошников, “Сходимость к стационарным мерам в нелинейных уравнениях Фоккера–Планка–Колмогорова”, Докл. РАН, 482:4 (2018), 369–374; V. I. Bogachev, M. Roeckner, S. V. Shaposhnikov, “Convergence to stationary measures in nonlinear Fokker–Planck–Kolmogorov equations”, Dokl. Math., 98:2 (2018), 452–457
V. I. Bogachev, M. Röckner, S. V. Shaposhnikov, “The Poisson Equation and Estimates for Distances Between Stationary Distributions of Diffusions”, J Math Sci, 232:3 (2018), 254
В. И. Богачев, А. И. Кириллов, С. В. Шапошников, “Расстояния между стационарными распределениями диффузий и разрешимость нелинейных уравнений Фоккера–Планка–Колмогорова”, Теория вероятн. и ее примен., 62:1 (2017), 16–43; V. I. Bogachev, A. I. Kirillov, S. V. Shaposhnikov, “Distances between stationary distributions of diffusions and solvability of nonlinear Fokker–Planck–Kolmogorov equations”, Theory Probab. Appl., 62:1 (2018), 12–34
Bogachev V.I., Roeckner M., Shaposhnikov S.V., “Distances between transition probabilities of diffusions and applications to nonlinear Fokker–Planck–Kolmogorov equations”, J. Funct. Anal., 271:5 (2016), 1262–1300