Loading [MathJax]/jax/output/SVG/config.js
Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2006, Volume 46, Number 12, Pages 2265–2276 (Mi zvmmf372)  

This article is cited in 15 scientific papers (total in 15 papers)

Artificial boundary conditions for finding surface waves in the problem of diffraction by a periodic boundary

S. A. Nazarov

Institute of Mechanical Engineering Problems, Russian Academy of Sciences, Vasil’evskii Ostrov, Bol'shoi pr. 61, St. Petersburg, 199178, Russia
Abstract: Transparent artificial boundary conditions and an algorithm for computing the augmented scattering matrix are proposed for finding surface waves in a prescribed range of decay rates. An infinite-dimensional fictitious scattering operator is constructed that determines all waves decaying exponentially with distance from a periodic obstacle.
Key words: artificial boundary conditions, diffraction by a periodic boundary, search for surface waves.
Received: 05.10.2004
Revised: 10.02.2006
English version:
Computational Mathematics and Mathematical Physics, 2006, Volume 46, Issue 12, Pages 2164–2175
DOI: https://doi.org/10.1134/S0965542506120141
Bibliographic databases:
Document Type: Article
UDC: 519.634
Language: Russian
Citation: S. A. Nazarov, “Artificial boundary conditions for finding surface waves in the problem of diffraction by a periodic boundary”, Zh. Vychisl. Mat. Mat. Fiz., 46:12 (2006), 2265–2276; Comput. Math. Math. Phys., 46:12 (2006), 2164–2175
Citation in format AMSBIB
\Bibitem{Naz06}
\by S.~A.~Nazarov
\paper Artificial boundary conditions for finding surface waves in the problem of diffraction by a~periodic boundary
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2006
\vol 46
\issue 12
\pages 2265--2276
\mathnet{http://mi.mathnet.ru/zvmmf372}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2344971}
\transl
\jour Comput. Math. Math. Phys.
\yr 2006
\vol 46
\issue 12
\pages 2164--2175
\crossref{https://doi.org/10.1134/S0965542506120141}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33846136735}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf372
  • https://www.mathnet.ru/eng/zvmmf/v46/i12/p2265
  • This publication is cited in the following 15 articles:
    1. S. A. Nazarov, “Almost standing waves in a periodic waveguide with a resonator and near-threshold eigenvalues”, St. Petersburg Math. J., 28:3 (2017), 377–410  mathnet  crossref  mathscinet  isi  elib
    2. D. I. Borisov, “Perturbation of Threshold of Essential Spectrum for Waveguides with Windows. II: Asymptotics”, J Math Sci, 210:5 (2015), 590  crossref
    3. Nazarov S.A., Ruotsalainen K.M., “Criteria For Trapped Modes in a Cranked Channel With Fixed and Freely Floating Bodies”, Z. Angew. Math. Phys., 65:5 (2014), 977–1002  crossref  mathscinet  zmath  isi  elib  scopus
    4. S. A. Nazarov, “Scheme for interpretation of approximately computed eigenvalues embedded in a continuous spectrum”, Comput. Math. Math. Phys., 53:6 (2013), 702–720  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    5. S. A. Nazarov, “The Mandelstam Energy Radiation Conditions and the Umov–Poynting Vector in Elastic Waveguides”, J Math Sci, 195:5 (2013), 676  crossref
    6. G. Cardone, S. A. Nazarov, K. Ruotsalainen, “Asymptotic behaviour of an eigenvalue in the continuous spectrum of a narrowed waveguide”, Sb. Math., 203:2 (2012), 153–182  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    7. S. A. Nazarov, “Enforced stability of an eigenvalue in the continuous spectrum of a waveguide with an obstacle”, Comput. Math. Math. Phys., 52:3 (2012), 448–464  mathnet  crossref  zmath  isi  elib  elib
    8. Nazarov S.A., “Trapped waves in a cranked waveguide with hard walls”, Acoustical Physics, 57:6 (2011), 764–771  crossref  mathscinet  adsnasa  isi  elib  elib  scopus
    9. S. A. Nazarov, “On the asymptotics of an eigenvalue of a waveguide with thin shielding obstacle and Wood's anomalies”, J. Math. Sci. (N. Y.), 178:3 (2011), 292–312  mathnet  crossref
    10. Chandler-Wilde S.N., Elschner J., “Variational approach in weighted Sobolev spaces to scattering by unbounded rough surfaces”, SIAM J. Math. Anal., 42:6 (2010), 2554–2580  crossref  mathscinet  zmath  isi  elib  scopus
    11. Nazarov S.A., “Trapped modes in a T-shaped waveguide”, Acoustical Physics, 56:6 (2010), 1004–1015  crossref  adsnasa  isi  elib
    12. S. A. Nazarov, “Gap detection in the spectrum of an elastic periodic waveguide with a free surface”, Comput. Math. Math. Phys., 49:2 (2009), 323–333  mathnet  crossref  mathscinet  zmath  isi  elib  elib
    13. S. A. Nazarov, “Concentration of trapped modes in problems of the linearized theory of water waves”, Sb. Math., 199:12 (2008), 1783–1807  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    14. S. A. Nazarov, “Trapped modes in a cylindrical elastic waveguide with a damping gasket”, Comput. Math. Math. Phys., 48:5 (2008), 816–833  mathnet  crossref  mathscinet  zmath  isi  elib  elib
    15. S. A. Nazarov, “On the concentration of the point spectrum on the continuous one in problems of the linearized theory of water-waves”, J. Math. Sci. (N. Y.), 152:5 (2008), 674–689  mathnet  crossref  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:329
    Full-text PDF :137
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025