Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2008, Volume 199, Issue 12, Pages 1783–1807
DOI: https://doi.org/10.1070/SM2008v199n12ABEH003981
(Mi sm3939)
 

This article is cited in 30 scientific papers (total in 30 papers)

Concentration of trapped modes in problems of the linearized theory of water waves

S. A. Nazarov

Institute of Problems of Mechanical Engineering, Russian Academy of Sciences
References:
Abstract: Problems of the linearized theory of waves on the surface of an ideal fluid filling a half-space or an infinite 3D-canyon are considered. Families of submerged or surface-piercing bodies parametrized by a characteristic linear size h>0 are found that have the following property: for each d>0 and each positive integer N there exists h(d,N)>0 such that for h(0,h(d,N)] the interval [0,d] of the continuous spectrum of the corresponding problem contains at least N eigenvalues corresponding to trapped modes, that is, to solutions of the homogeneous problem that decay exponentially at infinity and possess finite energy.
Bibliography: 38 titles.
Received: 28.08.2007 and 17.09.2008
Bibliographic databases:
UDC: 517.958:531.327
MSC: Primary 76B15; Secondary 35Q35
Language: English
Original paper language: Russian
Citation: S. A. Nazarov, “Concentration of trapped modes in problems of the linearized theory of water waves”, Sb. Math., 199:12 (2008), 1783–1807
Citation in format AMSBIB
\Bibitem{Naz08}
\by S.~A.~Nazarov
\paper Concentration of trapped modes in problems of the linearized theory of water waves
\jour Sb. Math.
\yr 2008
\vol 199
\issue 12
\pages 1783--1807
\mathnet{http://mi.mathnet.ru/eng/sm3939}
\crossref{https://doi.org/10.1070/SM2008v199n12ABEH003981}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2489688}
\zmath{https://zbmath.org/?q=an:1157.76006}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2008SbMat.199.1783N}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000264258100009}
\elib{https://elibrary.ru/item.asp?id=20359297}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-66149116451}
Linking options:
  • https://www.mathnet.ru/eng/sm3939
  • https://doi.org/10.1070/SM2008v199n12ABEH003981
  • https://www.mathnet.ru/eng/sm/v199/i12/p53
  • This publication is cited in the following 30 articles:
    1. Sergei A. Nazarov, Keijo M. Ruotsalainen, “Curved channels with constant cross sections may support trapped surface waves”, Z. Angew. Math. Phys., 74:4 (2023)  crossref
    2. Filipe S. Cal, Gonçalo A.S. Dias, Bruno M.A.M. Pereira, “Trapped modes in a fluid with three layers topped by a rigid lid”, Math Methods in App Sciences, 45:16 (2022), 9928  crossref
    3. S. A. Nazarov, “Modeling of a Singularly Perturbed Spectral Problem by Means of Self-Adjoint Extensions of the Operators of the Limit Problems”, Funct. Anal. Appl., 49:1 (2015), 25–39  mathnet  crossref  crossref  zmath  isi  elib
    4. Durante T., “Accumulation Effect For Water-Waves Mode Trapped in a Canal”, Proceedings of the International Conference of Numerical Analysis and Applied Mathematics 2014 (Icnaam-2014), AIP Conference Proceedings, 1648, eds. Simos T., Tsitouras C., Amer Inst Physics, 2015, UNSP 390007  crossref  isi  scopus
    5. S. A. Nazarov, “Asymptotic expansions of eigenvalues of the Steklov problem in singularly perturbed domains”, St. Petersburg Math. J., 26:2 (2015), 273–318  mathnet  crossref  mathscinet  isi  elib
    6. Piat V.Ch., Nazarov S.A., Ruotsalainen K., “Spectral gaps for water waves above a corrugated bottom”, Proc. R. Soc. A-Math. Phys. Eng. Sci., 469:2149 (2013), 20120545  crossref  mathscinet  zmath  isi  elib  scopus
    7. Nazarov S.A., Taskinen J., Videman J.H., “Asymptotic Behavior of Trapped Modes in Two-Layer Fluids”, Wave Motion, 50:2 (2013), 111–126  crossref  mathscinet  zmath  isi  elib  scopus
    8. Nazarov S.A., Taskinen J., “Localization Estimates for Eigenfrequencies of Waves Trapped by a Freely Floating Body in a Channel”, SIAM J. Math. Anal., 45:4 (2013), 2523–2545  crossref  mathscinet  zmath  isi  elib  scopus
    9. Kamotski I., Mazya V., “Estimate for a Solution to the Water Wave Problem in the Presence of a Submerged Body”, Russ. J. Math. Phys., 20:4 (2013), 453–467  crossref  mathscinet  zmath  isi  elib  scopus
    10. Nazarov S.A., Taskinen J., “Properties of the Spectrum in the John Problem on a Freely Floating Submerged Body in a Finite Basin”, Differ. Equ., 49:12 (2013), 1544–1559  crossref  mathscinet  zmath  isi  elib  scopus
    11. S. A. Nazarov, “Concentration of frequencies of trapped waves in problems on freely floating bodies”, Sb. Math., 203:9 (2012), 1269–1294  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    12. S. A. Nazarov, “Asymptotic behavior of the eigenvalues of the Steklov problem on a junction of domains of different limiting dimensions”, Comput. Math. Math. Phys., 52:11 (2012), 1574–1589  mathnet  crossref  mathscinet  isi  elib  elib
    13. Cal F.S., Dias G.S.A., Videman J.H., “Existence of trapped modes along periodic structures in a two-layer fluid”, Quart. J. Mech. Appl. Math., 65:2 (2012), 273–292  crossref  mathscinet  zmath  isi  elib  scopus
    14. Kamotski I.V. Maz'ya V.G., “On the linear water wave problem in the presence of a critically submerged body”, SIAM J. Math. Anal., 44:6 (2012), 4222–4249  crossref  mathscinet  zmath  isi  elib  scopus
    15. S. A. Nazarov, “Localization of surface waves by small perturbations of the boundary of a semisubmerged body”, J. Appl. Industr. Math., 6:2 (2012), 216–223  mathnet  crossref  mathscinet
    16. Nazarov S.A., “Incomplete comparison principle in problems about surface waves trapped by fixed and freely floating bodies”, J. Math. Sci., 175:3 (2011), 309–348  crossref  mathscinet  zmath  elib  scopus
    17. J. H. Videman, V. Chiado' Piat, S. A. Nazarov, “Asymptotics of frequency of a surface wave trapped by a slightly inclined barrier in a liquid layer”, J. Math. Sci. (N. Y.), 185:4 (2012), 536–553  mathnet  crossref  mathscinet
    18. S. A. Nazarov, J. Taskinen, “Double-sided estimates for eigenfrequencies in the John problem for freely floating body”, J. Math. Sci. (N. Y.), 185:5 (2012), 707–720  mathnet  crossref  mathscinet
    19. Nazarov S.A., Videman J.H., “Trapping of water waves by freely floating structures in a channel”, Proc. R. Soc. A, 467:2136 (2011), 3613–3632  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    20. Nazarov S.A., “A body traps as many water-wave modes in a symmetric channel as it wishes”, Russ. J. Math. Phys., 18:2 (2011), 183–194  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:1157
    Russian version PDF:242
    English version PDF:25
    References:148
    First page:13
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025