Citation:
S. A. Nazarov, “Asymptotic expansions of eigenvalues of the Steklov problem in singularly perturbed domains”, Algebra i Analiz, 26:2 (2014), 119–184; St. Petersburg Math. J., 26:2 (2015), 273–318
\Bibitem{Naz14}
\by S.~A.~Nazarov
\paper Asymptotic expansions of eigenvalues of the Steklov problem in singularly perturbed domains
\jour Algebra i Analiz
\yr 2014
\vol 26
\issue 2
\pages 119--184
\mathnet{http://mi.mathnet.ru/aa1380}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3242037}
\elib{https://elibrary.ru/item.asp?id=21826354}
\transl
\jour St. Petersburg Math. J.
\yr 2015
\vol 26
\issue 2
\pages 273--318
\crossref{https://doi.org/10.1090/S1061-0022-2015-01339-3}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000357043600004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84922279654}
Linking options:
https://www.mathnet.ru/eng/aa1380
https://www.mathnet.ru/eng/aa/v26/i2/p119
This publication is cited in the following 12 articles:
S. A. Nazarov, “Plastina Kirkhgofa s usloviyami Vinklera–Steklova na malykh uchastkakh kromki”, Algebra i analiz, 36:3 (2024), 165–212
S. A. Nazarov, “‘Far interaction’ of small spectral perturbations of the Neumann boundary conditions for an elliptic system of differential equations in a three-dimensional domain”, Sb. Math., 214:1 (2023), 58–107
S. A. Nazarov, “Asimptotika sobstvennykh chisel zadachi teorii uprugosti so spektralnymi usloviyami Vinklera–Steklova na malykh uchastkakh granitsy”, Kraevye zadachi matematicheskoi fiziki i smezhnye voprosy teorii funktsii. 50, Zap. nauchn. sem. POMI, 519, POMI, SPb., 2022, 152–187
Girouard A., Henrot A., Lagace J., “From Steklov to Neumann Via Homogenisation”, Arch. Ration. Mech. Anal., 239:2 (2021), 981–1023
Bucur D., Henrot A., Michetti M., “Asymptotic Behaviour of the Steklov Spectrum on Dumbbell Domains”, Commun. Partial Differ. Equ., 46:2 (2021), 362–393
D. B. Davletov, O. B. Davletov, R. R. Davletova, A. A. Ershov, “Skhodimost sobstvennykh elementov kraevoi zadachi tipa Steklova dlya operatora Lame”, Tr. IMM UrO RAN, 27, no. 1, 2021, 37–47
de Cristoforis M.L., “Multiple Eigenvalues For the Steklov Problem in a Domain With a Small Hole. a Functional Analytic Approach”, Asymptotic Anal., 121:3-4 (2021), 335–365
D. Bucur, A. Giacomini, P. Trebeschi, “L-infinity bounds of steklov eigenfunctions and spectrum stability under domain variation”, J. Differ. Equ., 269:12 (2020), 11461–11491
H. Ammaria, K. Imeri, N. Nigam, “Optimization of steklov-neumann eigenvalues”, J. Comput. Phys., 406 (2020), 109211
V. Chiadò Piat, S. A. Nazarov, “Mixed Boundary Value Problems in Singularly Perturbed Two-Dimensional Domains with the Steklov Spectral Condition”, J Math Sci, 251:5 (2020), 655
D. B. Davletov, D. V. Kozhevnikov, “The problem of Steklov type in a half-cylinder with a small cavity”, Ufa Math. J., 8:4 (2016), 62–87
Gryshchuk S., de Cristoforis M.L., “Simple Eigenvalues For the Steklov Problem in a Domain With a Small Hole. a Functional Analytic Approach”, Math. Meth. Appl. Sci., 37:12 (2014), 1755–1771