Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2014, Volume 26, Issue 2, Pages 119–184 (Mi aa1380)  

This article is cited in 12 scientific papers (total in 12 papers)

Research Papers

Asymptotic expansions of eigenvalues of the Steklov problem in singularly perturbed domains

S. A. Nazarovab

a Institute of Problems of Mechanical Engineering, Russian Academy of Sciences, St. Petersburg, Russia
b St. Petersburg State University, Department of Mathematics and Mechanics, St. Petersburg, Russia
References:
Received: 01.12.2012
English version:
St. Petersburg Mathematical Journal, 2015, Volume 26, Issue 2, Pages 273–318
DOI: https://doi.org/10.1090/S1061-0022-2015-01339-3
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: S. A. Nazarov, “Asymptotic expansions of eigenvalues of the Steklov problem in singularly perturbed domains”, Algebra i Analiz, 26:2 (2014), 119–184; St. Petersburg Math. J., 26:2 (2015), 273–318
Citation in format AMSBIB
\Bibitem{Naz14}
\by S.~A.~Nazarov
\paper Asymptotic expansions of eigenvalues of the Steklov problem in singularly perturbed domains
\jour Algebra i Analiz
\yr 2014
\vol 26
\issue 2
\pages 119--184
\mathnet{http://mi.mathnet.ru/aa1380}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3242037}
\elib{https://elibrary.ru/item.asp?id=21826354}
\transl
\jour St. Petersburg Math. J.
\yr 2015
\vol 26
\issue 2
\pages 273--318
\crossref{https://doi.org/10.1090/S1061-0022-2015-01339-3}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000357043600004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84922279654}
Linking options:
  • https://www.mathnet.ru/eng/aa1380
  • https://www.mathnet.ru/eng/aa/v26/i2/p119
  • This publication is cited in the following 12 articles:
    1. S. A. Nazarov, “Plastina Kirkhgofa s usloviyami Vinklera–Steklova na malykh uchastkakh kromki”, Algebra i analiz, 36:3 (2024), 165–212  mathnet
    2. S. A. Nazarov, “‘Far interaction’ of small spectral perturbations of the Neumann boundary conditions for an elliptic system of differential equations in a three-dimensional domain”, Sb. Math., 214:1 (2023), 58–107  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    3. S. A. Nazarov, “Asimptotika sobstvennykh chisel zadachi teorii uprugosti so spektralnymi usloviyami Vinklera–Steklova na malykh uchastkakh granitsy”, Kraevye zadachi matematicheskoi fiziki i smezhnye voprosy teorii funktsii. 50, Zap. nauchn. sem. POMI, 519, POMI, SPb., 2022, 152–187  mathnet
    4. Girouard A., Henrot A., Lagace J., “From Steklov to Neumann Via Homogenisation”, Arch. Ration. Mech. Anal., 239:2 (2021), 981–1023  crossref  mathscinet  isi  scopus
    5. Bucur D., Henrot A., Michetti M., “Asymptotic Behaviour of the Steklov Spectrum on Dumbbell Domains”, Commun. Partial Differ. Equ., 46:2 (2021), 362–393  crossref  mathscinet  isi  scopus
    6. D. B. Davletov, O. B. Davletov, R. R. Davletova, A. A. Ershov, “Skhodimost sobstvennykh elementov kraevoi zadachi tipa Steklova dlya operatora Lame”, Tr. IMM UrO RAN, 27, no. 1, 2021, 37–47  mathnet  crossref  elib
    7. de Cristoforis M.L., “Multiple Eigenvalues For the Steklov Problem in a Domain With a Small Hole. a Functional Analytic Approach”, Asymptotic Anal., 121:3-4 (2021), 335–365  crossref  mathscinet  isi  scopus
    8. D. Bucur, A. Giacomini, P. Trebeschi, “L-infinity bounds of steklov eigenfunctions and spectrum stability under domain variation”, J. Differ. Equ., 269:12 (2020), 11461–11491  crossref  mathscinet  zmath  isi
    9. H. Ammaria, K. Imeri, N. Nigam, “Optimization of steklov-neumann eigenvalues”, J. Comput. Phys., 406 (2020), 109211  crossref  mathscinet  isi
    10. V. Chiadò Piat, S. A. Nazarov, “Mixed Boundary Value Problems in Singularly Perturbed Two-Dimensional Domains with the Steklov Spectral Condition”, J Math Sci, 251:5 (2020), 655  crossref
    11. D. B. Davletov, D. V. Kozhevnikov, “The problem of Steklov type in a half-cylinder with a small cavity”, Ufa Math. J., 8:4 (2016), 62–87  mathnet  crossref  isi  elib
    12. Gryshchuk S., de Cristoforis M.L., “Simple Eigenvalues For the Steklov Problem in a Domain With a Small Hole. a Functional Analytic Approach”, Math. Meth. Appl. Sci., 37:12 (2014), 1755–1771  crossref  mathscinet  zmath  isi  elib  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:617
    Full-text PDF :130
    References:111
    First page:55
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025