Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2012, Volume 52, Number 3, Pages 521–538 (Mi zvmmf9675)  

This article is cited in 25 scientific papers (total in 25 papers)

Enforced stability of an eigenvalue in the continuous spectrum of a waveguide with an obstacle

S. A. Nazarov

Institute of Mechanical Engineering Problems, Russian Academy of Sciences, Vasil’evskii Ostrov, Bol’shoi pr. 61, St. Petersburg, 199178 Russia
References:
Abstract: Perturbations of an eigenvalue in the continuous spectrum of the Neumann problem for the Laplacian in a strip waveguide with an obstacle symmetric about the midline are studied. Such an eigenvalue is known to be unstable, and an arbitrarily small perturbation can cause it to leave the spectrum to become a complex resonance point. Conditions on the perturbation of the obstacle boundary are found under which the eigenvalue persists in the continuous spectrum. The result is obtained via the asymptotic analysis of an auxiliary object, namely, an augmented scattering matrix.
Key words: waveguide with an obstacle, perturbation, eigenvalue in the continuous spectrum, enforced stability, augmented scattering matrix.
Received: 04.05.2011
Revised: 25.08.2011
English version:
Computational Mathematics and Mathematical Physics, 2012, Volume 52, Issue 3, Pages 448–464
DOI: https://doi.org/10.1134/S096554251203013X
Bibliographic databases:
Document Type: Article
UDC: 519.634
Language: Russian
Citation: S. A. Nazarov, “Enforced stability of an eigenvalue in the continuous spectrum of a waveguide with an obstacle”, Zh. Vychisl. Mat. Mat. Fiz., 52:3 (2012), 521–538; Comput. Math. Math. Phys., 52:3 (2012), 448–464
Citation in format AMSBIB
\Bibitem{Naz12}
\by S.~A.~Nazarov
\paper Enforced stability of an eigenvalue in the continuous spectrum of a~waveguide with an~obstacle
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2012
\vol 52
\issue 3
\pages 521--538
\mathnet{http://mi.mathnet.ru/zvmmf9675}
\zmath{https://zbmath.org/?q=an:06057605}
\elib{https://elibrary.ru/item.asp?id=17647716}
\transl
\jour Comput. Math. Math. Phys.
\yr 2012
\vol 52
\issue 3
\pages 448--464
\crossref{https://doi.org/10.1134/S096554251203013X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000303535800009}
\elib{https://elibrary.ru/item.asp?id=17981905}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84859347729}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf9675
  • https://www.mathnet.ru/eng/zvmmf/v52/i3/p521
  • This publication is cited in the following 25 articles:
    1. S. A. Nazarov, “Abnormal Transmission of Elastic Waves through a Thin Ligament Connecting Two Planar Isotropic Waveguides”, Mech. Solids, 57:8 (2022), 1908  crossref
    2. Chesnel L., Nazarov S.A., “Exact Zero Transmission During the Fano Resonance Phenomenon in Non-Symmetric Waveguides”, Z. Angew. Math. Phys., 71:3 (2020), 82  crossref  isi
    3. V. A. Kozlov, S. A. Nazarov, A. Orlof, “Trapped modes in armchair graphene nanoribbons”, Matematicheskie voprosy teorii rasprostraneniya voln. 49, Zap. nauchn. sem. POMI, 483, POMI, SPb., 2019, 85–115  mathnet
    4. A.-S. Bonnet-Ben Dhia, L. Chesnel, S. A. Nazarov, “Perfect transmission invisibility for waveguides with sound hard walls”, J. Math. Pures Appl., 111 (2018), 79–105  crossref  mathscinet  zmath  isi  scopus
    5. V. Ch. Piat, S. A. Nazarov, J. Taskinen, “Embedded eigenvalues forwater-waves in athree-dimensional channel with athin screen”, Q. J. Mech. Appl. Math., 71:2 (2018), 187–220  crossref  mathscinet  isi  scopus
    6. L. Chesnel, S. A. Nazarov, V. Pagneux, “Invisibility and perfect reflectivity in waveguides with finite length branches”, SIAM J. Appl. Math., 78:4 (2018), 2176–2199  crossref  mathscinet  zmath  isi  scopus
    7. S. A. Nazarov, “Various manifestations of Wood anomalies in locally distorted quantum waveguides”, Comput. Math. Math. Phys., 58:11 (2018), 1838–1855  mathnet  crossref  crossref  isi  elib
    8. Chesnel L., Nazarov S.A., “Non Reflection and Perfect Reflection Via Fano Resonance in Waveguides”, Commun. Math. Sci., 16:7 (2018), 1779–1800  crossref  mathscinet  isi  scopus
    9. A. Laptev, S. M. Sasane, “Perturbations of embedded eigenvalues for a magnetic Schrödinger operator on a cylinder”, J. Math. Phys., 58:1 (2017), 012105  crossref  mathscinet  zmath  isi  scopus
    10. V. A. Kozlov, S. A. Nazarov, A. Orlof, “Trapped modes in zigzag graphene nanoribbons”, Z. Angew. Math. Phys., 68:4 (2017), 78  crossref  mathscinet  zmath  isi  scopus
    11. S. A. Nazarov, “Almost standing waves in a periodic waveguide with a resonator and near-threshold eigenvalues”, St. Petersburg Math. J., 28:3 (2017), 377–410  mathnet  crossref  mathscinet  isi  elib
    12. A. R. Bikmetov, R. R. Gadyl'shin, “On local perturbations of waveguides”, Russ. J. Math. Phys., 23:1 (2016), 1–18  crossref  mathscinet  zmath  isi  scopus
    13. L. Chesnel, S. A. Nazarov, “Team organization may help swarms of flies to become invisible in closed waveguides”, Inverse Probl. Imaging, 10:4 (2016), 977–1006  crossref  mathscinet  zmath  isi  elib  scopus
    14. S. A. Nazarov, K. M. Ruotsalainen, M. Silvola, “Trapped modes in piezoelectric and elastic waveguides”, J. Elast., 124:2 (2016), 193–223  crossref  mathscinet  zmath  isi  elib  scopus
    15. S. A. Nazarov, K. M. Ruotsalainen, “A rigorous interpretation of approximate computations of embedded eigenfrequencies of water waves”, Z. Anal. ihre. Anwend., 35:2 (2016), 211–242  crossref  mathscinet  zmath  isi  elib  scopus
    16. V. A. Kozlov, S. A. Nazarov, A. Orlof, “Trapped modes supported by localized potentials in the zigzag graphene ribbon”, C. R. Math., 354:1 (2016), 63–67  crossref  mathscinet  zmath  isi  elib
    17. S. A. Nazarov, “Transmission Conditions in One-Dimensional Model of a Rectangular Lattice of Thin Quantum Waveguides”, J Math Sci, 219:6 (2016), 994  crossref
    18. J. T. Kemppainen, S. A. Nazarov, K. M. Ruotsalainen, “Perturbation analysis of embedded eigenvalues for water-waves”, J. Math. Anal. Appl., 427:1 (2015), 399–427  crossref  mathscinet  zmath  isi  elib  scopus
    19. A.-S. B.-B. Dhia, L. Chesnel, S. A. Nazarov, “Non-scattering wavenumbers and far field invisibility for a finite set of incident/scattering directions”, Inverse Probl., 31:4 (2015), 045006  crossref  mathscinet  zmath  isi  scopus
    20. L. Chesnel, N. Hyvonen, S. Staboulis, “Construction of indistinguishable conductivity perturbations for the point electrode model in electrical impedance tomography”, SIAM J. Appl. Math., 75:5 (2015), 2093–2109  crossref  mathscinet  zmath  isi  elib  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:412
    Full-text PDF :108
    References:77
    First page:13
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025